A259194 Number of partitions of n into four primes.
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 2, 3, 3, 4, 4, 6, 3, 6, 5, 7, 5, 9, 5, 11, 7, 11, 7, 13, 6, 14, 9, 15, 8, 18, 9, 21, 10, 19, 11, 24, 10, 26, 12, 26, 13, 30, 12, 34, 15, 33, 16, 38, 14, 41, 17, 41, 16, 45, 16, 50, 19, 47, 21, 56, 20, 61, 20, 57
Offset: 0
Examples
a(17) = 3 because 17 can be written as the sum of four primes in exactly three ways: 2+2+2+11, 2+3+5+7 and 2+5+5+5.
Links
Crossrefs
Programs
-
Magma
[0] cat [#RestrictedPartitions(n,4,{d:d in PrimesUpTo(n)}):n in [1..100]]; // Marius A. Burtea, May 07 2019
-
Mathematica
a[n_] := Length@ IntegerPartitions[n, {4}, Prime@ Range@ PrimePi@ n]; a /@ Range[0, 100] (* Giovanni Resta, Jun 21 2015 *) Table[Count[IntegerPartitions[n,{4}],?(AllTrue[#,PrimeQ]&)],{n,0,80}] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale, Feb 03 2019 *)
-
PARI
a(n) = {nb = 0; forpart(p=n, if (#p && (#select(x->isprime(x), Vec(p)) == #p), nb+=1), , [4,4]); nb;} \\ Michel Marcus, Jun 21 2015
Formula
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} A010051(i) * A010051(j) * A010051(k) * A010051(n-i-j-k). - Wesley Ivan Hurt, Apr 17 2019
a(n) = [x^n y^4] Product_{k>=1} 1/(1 - y*x^prime(k)). - Ilya Gutkovskiy, Apr 18 2019