A232091 Smallest square or promic (oblong) number greater than or equal to n.
0, 1, 2, 4, 4, 6, 6, 9, 9, 9, 12, 12, 12, 16, 16, 16, 16, 20, 20, 20, 20, 25, 25, 25, 25, 25, 30, 30, 30, 30, 30, 36, 36, 36, 36, 36, 36, 42, 42, 42, 42, 42, 42, 49, 49, 49, 49, 49, 49, 49, 56, 56, 56, 56, 56, 56, 56, 64, 64, 64, 64, 64, 64, 64, 64, 72, 72, 72, 72, 72, 72, 72, 72, 81
Offset: 0
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
- David Applegate, Proof of the equality A216607(n) = A232091(n) - n.
- E. Daring, I. Guadarrama, S. Sprague, and C. Winterer, WhaleConjecture.
- Casey Douglas, The Next Square or Pronic, June 2012. [Wayback Machine copy]
Crossrefs
Programs
-
Magma
[(Ceiling(n /Ceiling(Sqrt(n)))*Ceiling(Sqrt(n))): n in [1..80]]; // Vincenzo Librandi, Jun 22 2015
-
Mathematica
Join[{0}, Table[Ceiling[n/Ceiling[Sqrt[n]]] Ceiling[Sqrt[n]], {n, 100}]] (* Alonso del Arte, Nov 18 2013 *)
-
PARI
a(n)=my(t=sqrtint(n-1)+1);t*((n-1)\t+1) \\ Charles R Greathouse IV, Nov 18 2013
Formula
a(n) = ceiling(n/ceiling(sqrt(n)))*ceiling(sqrt(n)).
a(n) = min(k : k >= n, k in A002620).
a(k^2) = k^2; a(k*(k+1)) = k*(k+1).
It appears that a(n) = A216607(n) + n. (Verified for all n<10^9 by Lars Blomberg, Jan 09 2014.) This conjecture now follows from a proof given by David Applegate, Jan 10 2014 (see [Applegate]).
Sum_{n>=1} 1/a(n)^2 = 2 - Pi^2/6 + zeta(3). - Amiram Eldar, Aug 16 2022
Extensions
Extended by Charles R Greathouse IV, Nov 18 2013
a(0)=0 prepended by Michel Marcus, Jun 22 2015
Comments