cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A259226 Numbers n such that A157480(n) = A259232(n).

Original entry on oeis.org

2, 3, 7, 12, 14, 19, 29, 36, 37, 38, 42, 46, 50, 67, 73, 74, 82, 84, 106, 110, 112, 125, 134, 143, 157, 168, 169, 177, 183, 202, 222, 226, 232, 249, 263, 275, 278, 282, 314, 327, 355, 369, 399, 433, 457, 464, 483, 557, 617, 685, 820, 826, 835, 838, 935, 937, 1031, 1059, 1080, 1087, 1112, 1205, 1276, 1296, 1316, 1349, 1421, 1503, 1505, 1713, 1827, 2017, 2085, 2092, 2263, 2337, 2357, 2498, 2591, 2594, 2634, 2676, 2771, 2984, 3128, 3776, 3777, 3928, 4382, 5037, 5319, 5448, 5621, 5839, 6137, 6183, 6521, 7373, 9867
Offset: 1

Views

Author

Zak Seidov, Jun 22 2015

Keywords

Comments

Or numbers n such that A157480(n) > A000040(n).
It is a strong conjecture that the sequence is complete, and the last term is a(99)=9867.

Crossrefs

A259237 a(n) = least prime q such that q + prime(n) is a cube.

Original entry on oeis.org

727, 5, 3, 1721, 53, 499, 47, 197, 41, 971, 1697, 179, 23, 173, 17, 11, 5, 3, 149, 929, 439, 137, 4013, 127, 2647, 1627, 113, 109, 107, 103, 89, 1597, 79, 373, 67, 2593, 59, 53, 3929, 43, 37, 331, 809, 23, 19, 17, 5, 2521, 773, 283, 3863, 761, 271, 5581, 743, 3833
Offset: 1

Views

Author

Zak Seidov, Jun 22 2015

Keywords

Comments

Corresponding values of (a(n)+prime(n))^(1/3): 9,2,2,12,4,8,4,6,4,10,12,6,4,6,4,4,4,4,6,10,8,6,16,6,14,12,6,6,6,6,6.

Crossrefs

Programs

  • Maple
    f:= proc(n) local p,k;
      p:= ithprime(n);
      for k from ceil(p^(1/3)) do
        if isprime(k^3 - p) then return k^3 - p fi
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, Oct 17 2023
  • Mathematica
    Table[p=Prime[n];x=Ceiling[p^(1/3)];While[!PrimeQ[q=x^3-p],x++];q,{n,100}]
  • PARI
    a(n) = {p = prime(n); k=2; while(!ispower(p+k,3), k = nextprime(k+1)); k;} \\ Michel Marcus, Jun 22 2015

A381368 a(n) is the least k > n for which prime(n) + prime(k) is a square.

Original entry on oeis.org

4, 6, 5, 10, 16, 9, 8, 102, 13, 20, 30, 28, 17, 26, 16, 58, 33, 23, 55, 21, 54, 142, 30, 28, 49, 48, 139, 35, 91, 47, 45, 44, 56, 135, 54, 40, 39, 252, 51, 49, 78, 128, 62, 76, 75, 126, 245, 71, 55, 69, 54, 68, 120, 137, 81, 65, 63, 238, 171, 96, 62, 76, 108, 209
Offset: 1

Views

Author

Felix Huber, Mar 02 2025

Keywords

Comments

Least k > n for which A000040(n) + A000040(k) is a term of A000290.
a(1) = 1 if k = n were also permitted. All other terms would remain unchanged.

Examples

			a(2) = 6 because prime(2) + prime(6) = 3 + 13 = 4^2 and 3 + 5, 3 + 7, 3 + 11 are not squares.
		

Crossrefs

Programs

  • Maple
    A381368:=proc(n)
        local k;
            for k from n+1 do
                if issqr(ithprime(n)+ithprime(k)) then
                    return k
                fi
            od
    end proc;
    seq(A381368(n),n=1..64);
  • Mathematica
    a[n_]:=Module[{k=n+1},While[!IntegerQ[Sqrt[Prime[n]+Prime[k]]], k++]; k]; Array[a,64] (* Stefano Spezia, Mar 02 2025 *)
  • PARI
    a(n) = my(k=n+1, q=prime(n+1), p=prime(n)); while (!issquare(p+q), k++;q=nextprime(q+1)); k; \\ Michel Marcus, Mar 02 2025

Formula

a(n) = A000720(A259232(n)). - Michel Marcus, Mar 02 2025
Showing 1-3 of 3 results.