cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A259309 Numbers k such that 1 + sigma(k)^4 is prime.

Original entry on oeis.org

1, 3, 5, 12, 14, 15, 19, 23, 28, 33, 34, 35, 39, 40, 47, 53, 57, 58, 73, 76, 79, 86, 88, 89, 104, 112, 116, 118, 126, 131, 133, 134, 138, 139, 145, 147, 148, 154, 163, 165, 173, 175, 179, 183, 185, 189, 193, 197, 201, 204, 206, 207, 213, 216, 219, 220, 224
Offset: 1

Views

Author

Robert Price, Jun 24 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..250] | IsPrime(1+SumOfDivisors(n)^4)]; // Vincenzo Librandi, Jun 24 2015
    
  • Maple
    with(numtheory): A259309:=n->`if`(isprime(1 + sigma(n)^4), n, NULL): seq(A259309(n), n=1..500); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Select[ Range[10000], PrimeQ[ 1 + DivisorSigma[1, #]^4] & ]
    Select[ Range[10000], PrimeQ[ Cyclotomic[8, DivisorSigma[1, #]]] &]
  • PARI
    is(n)=my(s=sigma(n)); isprime(s^4+1) \\ Charles R Greathouse IV, May 22 2017

A259310 Primes of the form: 1 + sigma(n)^4.

Original entry on oeis.org

2, 257, 1297, 614657, 331777, 331777, 160001, 331777, 9834497, 5308417, 8503057, 5308417, 9834497, 65610001, 5308417, 8503057, 40960001, 65610001, 29986577, 384160001, 40960001, 303595777, 1049760001, 65610001, 1944810001, 3782742017, 1944810001, 1049760001
Offset: 1

Views

Author

Robert Price, Jun 24 2015

Keywords

Comments

These primes are neither sorted nor uniqued. They are listed in the order found in A259308.

Crossrefs

Programs

  • Magma
    [a: n in [1..150] | IsPrime(a) where a is 1 + SumOfDivisors(n)^4]; // Vincenzo Librandi, Jun 24 2015
  • Maple
    with(numtheory): A259310:=n->`if`(isprime(1+sigma(n)^4), 1+sigma(n)^4, NULL): seq(A259310(n), n=1..200); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Select[Table[1 + DivisorSigma[1, n]^4, {n, 10000}], PrimeQ]
    Select[Table[Cyclotomic[8, DivisorSigma[1, n]], {n, 10000}], PrimeQ]

Formula

a(n) = A259308(A259309(n)).
Showing 1-2 of 2 results.