cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A259308 a(n) = 1 + sigma(n)^4.

Original entry on oeis.org

2, 82, 257, 2402, 1297, 20737, 4097, 50626, 28562, 104977, 20737, 614657, 38417, 331777, 331777, 923522, 104977, 2313442, 160001, 3111697, 1048577, 1679617, 331777, 12960001, 923522, 3111697, 2560001, 9834497, 810001, 26873857, 1048577, 15752962, 5308417
Offset: 1

Views

Author

Robert Price, Jun 24 2015

Keywords

Crossrefs

Cf. A000203 (sum of divisors of n).
Cf. A259309 (indices of primes in this sequence), A259310 (corresponding primes).

Programs

  • Magma
    [(1 + SumOfDivisors(n)^4): n in [1..50]]; // Vincenzo Librandi, Jun 24 2015
  • Maple
    with(numtheory): A259308:=n->1+sigma(n)^4: seq(A259308(n), n=1..50); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Table[1 + DivisorSigma[1, n]^4, {n, 10000}]
    Table[Cyclotomic[8, DivisorSigma[1, n]], {n, 10000}]

Formula

a(n) = 1 + A000203(n)^4.
a(n) = A019326(A000203(n)). - Michel Marcus, Jun 24 2015

A259309 Numbers k such that 1 + sigma(k)^4 is prime.

Original entry on oeis.org

1, 3, 5, 12, 14, 15, 19, 23, 28, 33, 34, 35, 39, 40, 47, 53, 57, 58, 73, 76, 79, 86, 88, 89, 104, 112, 116, 118, 126, 131, 133, 134, 138, 139, 145, 147, 148, 154, 163, 165, 173, 175, 179, 183, 185, 189, 193, 197, 201, 204, 206, 207, 213, 216, 219, 220, 224
Offset: 1

Views

Author

Robert Price, Jun 24 2015

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..250] | IsPrime(1+SumOfDivisors(n)^4)]; // Vincenzo Librandi, Jun 24 2015
    
  • Maple
    with(numtheory): A259309:=n->`if`(isprime(1 + sigma(n)^4), n, NULL): seq(A259309(n), n=1..500); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Select[ Range[10000], PrimeQ[ 1 + DivisorSigma[1, #]^4] & ]
    Select[ Range[10000], PrimeQ[ Cyclotomic[8, DivisorSigma[1, #]]] &]
  • PARI
    is(n)=my(s=sigma(n)); isprime(s^4+1) \\ Charles R Greathouse IV, May 22 2017
Showing 1-2 of 2 results.