cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A259435 a(n) = 2*(n-1)^6*(n+1)^2*(n^2+10*n+1).

Original entry on oeis.org

2, 0, 450, 81920, 2077650, 22413312, 148531250, 716636160, 2763575010, 9017753600, 25850353122, 66816000000, 158678718770, 351151718400, 731985584850, 1449526034432, 2745436781250, 5000952545280, 8800799033090, 15019798118400, 24938174692242, 40392704000000
Offset: 0

Views

Author

Vincenzo Librandi, Jun 27 2015

Keywords

Comments

This appears as the function alpha(n) in Delest, related to bar/bat theory; see section 3.

Crossrefs

Programs

  • Magma
    [2*(n-1)^6*(n+1)^2*(n^2+10*n+1): n in [0..30]];
    
  • Maple
    A259435:=n->2*(n-1)^6*(n+1)^2*(n^2+10*n+1): seq(A259435(n), n=0..30); # Wesley Ivan Hurt, Jun 29 2015
  • Mathematica
    Table[2 (n - 1)^6 (n + 1)^2 (n^2 + 10 n + 1), {n, 0, 30}]
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{2,0,450,81920,2077650,22413312,148531250,716636160,2763575010,9017753600,25850353122},30] (* Harvey P. Dale, Dec 29 2024 *)
  • PARI
    a(n)=2*(n-1)^6*(n+1)^2*(n^2+10*n+1) \\ Charles R Greathouse IV, Jun 29 2015
    
  • Sage
    [2*(n-1)^6*(n+1)^2*(n^2+10*n+1) for n in (0..30)] # Bruno Berselli, Jun 30 2015

Formula

G.f.: 2*(1 -11*x + 280*x^2 + 38320*x^3 + 600970*x^4 + 1994794*x^5 + 1444096*x^6 - 231320*x^7 - 207395*x^8 - 10935*x^9)/(1-x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11).

A259563 a(n) = 81*n^3*(n-1)^5*(n+1)^2*(n^2-6*n+1)*(n^3-79*n^2+163*n-81).

Original entry on oeis.org

0, 0, 2571912, 2472394752, 138662798400, 1666179072000, -4637478825000, -272992368918528, -3187483870330368, -23209723979366400, -126970182577359000, -566493158246400000, -2161675076294530368, -7278963158259007488, -22112928086617859400, -61611251010011136000
Offset: 0

Views

Author

Vincenzo Librandi, Jun 30 2015

Keywords

Crossrefs

Programs

  • Magma
    [81*n^3*(n-1)^5*(n+1)^2*(n^2-6*n+1)*(n^3-79*n^2+163*n-81): n in [0..20]];
  • Mathematica
    Table[81 n^3 (n-1)^5 (n+1)^2 (n^2 - 6 n + 1) (n^3 - 79 n^2 + 163 n - 81), {n, 0, 23}]
    LinearRecurrence[{16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1},{0,0,2571912,2472394752,138662798400,1666179072000,-4637478825000,-272992368918528,-3187483870330368,-23209723979366400,-126970182577359000,-566493158246400000,-2161675076294530368,-7278963158259007488,-22112928086617859400,-61611251010011136000},20] (* Harvey P. Dale, Sep 02 2024 *)

Formula

G.f.: 52488*x^2*(49 + 46320*x + 1894016*x^2 - 4899760*x^3 - 305530185*x^4 - 1372006208*x^5 - 1287460720*x^6 + 1418574528*x^7 + 2422309735*x^8 + 1000206160*x^9 + 139190784*x^10 + 5654000*x^11 + 37281*x^12)/(1-x)^16.
a(n) = 16*a(n-1) - 120*a(n-2) + 560*a(n-3) - 1820*a(n-4) + 4368*a(n-5) - 8008*a(n-6) + 11440*a(n-7) - 12870*a(n-8) + 11440*a(n-9) - 8008*a(n-10) + 4368*a(n-11) - 1820*a(n-12) + 560*a(n-13) - 120*a(n-14) + 16*a(n-15) - a(n-16).
Showing 1-2 of 2 results.