cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259435 a(n) = 2*(n-1)^6*(n+1)^2*(n^2+10*n+1).

Original entry on oeis.org

2, 0, 450, 81920, 2077650, 22413312, 148531250, 716636160, 2763575010, 9017753600, 25850353122, 66816000000, 158678718770, 351151718400, 731985584850, 1449526034432, 2745436781250, 5000952545280, 8800799033090, 15019798118400, 24938174692242, 40392704000000
Offset: 0

Views

Author

Vincenzo Librandi, Jun 27 2015

Keywords

Comments

This appears as the function alpha(n) in Delest, related to bar/bat theory; see section 3.

Crossrefs

Programs

  • Magma
    [2*(n-1)^6*(n+1)^2*(n^2+10*n+1): n in [0..30]];
    
  • Maple
    A259435:=n->2*(n-1)^6*(n+1)^2*(n^2+10*n+1): seq(A259435(n), n=0..30); # Wesley Ivan Hurt, Jun 29 2015
  • Mathematica
    Table[2 (n - 1)^6 (n + 1)^2 (n^2 + 10 n + 1), {n, 0, 30}]
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{2,0,450,81920,2077650,22413312,148531250,716636160,2763575010,9017753600,25850353122},30] (* Harvey P. Dale, Dec 29 2024 *)
  • PARI
    a(n)=2*(n-1)^6*(n+1)^2*(n^2+10*n+1) \\ Charles R Greathouse IV, Jun 29 2015
    
  • Sage
    [2*(n-1)^6*(n+1)^2*(n^2+10*n+1) for n in (0..30)] # Bruno Berselli, Jun 30 2015

Formula

G.f.: 2*(1 -11*x + 280*x^2 + 38320*x^3 + 600970*x^4 + 1994794*x^5 + 1444096*x^6 - 231320*x^7 - 207395*x^8 - 10935*x^9)/(1-x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11).