cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259550 a(n) = C(5*n-1,2*n)/3, n > 0, a(0) = 1.

Original entry on oeis.org

1, 2, 42, 1001, 25194, 653752, 17298645, 463991880, 12570420330, 343176898988, 9425842448792, 260170725132045, 7210477496434485, 200519284375732896, 5592628786362932776, 156375886125188595376, 4382048530314336892010, 123033460966787345446836
Offset: 0

Views

Author

Vladimir Kruchinin, Jun 30 2015

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [Binomial(5*n-1, 2*n)/3: n in [1..20]]; // Vincenzo Librandi, Jul 01 2015
  • Mathematica
    Join[{1}, Table[Binomial[5 n - 1, 2 n]/3, {n, 30}]] (* Vincenzo Librandi, Jul 01 2015 *)
  • Maxima
    makelist(if n=0 then 1 else binomial(5*n-1,2*n)/3,n,0,20);
    
  • PARI
    vector(20, n, n--; if (n==0, 1, binomial(5*n-1,2*n)/3)) \\ Michel Marcus, Jul 01 2015
    

Formula

G.f.: A(x) = 1 + (x*B(x)')/(B(x)), B(x) = (1 + x*B(x)^5)*C(x*B(x)^5) is g.f. of A060941, C(x) is g.f. of Catalan numbers.
a(n) = n*Sum_{i = 0..n}((C(5*n,i)*C(7*n-2*i-1,n-i))/(6*n-i)), n > 1, a(0) = 1.
a(n) = 1/5*A001450(n) for n >= 1. exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 2*x + 23*x^2 + 377*x^3 + ... is the o.g.f. for the sequence of Duchon numbers A060941. - Peter Bala, Oct 05 2015
D-finite with recurrence 6*n*(3*n-1)*(2*n-1)*(3*n-2)*a(n) -5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1)=0. - R. J. Mathar, Nov 22 2024