cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259967 a(n) = a(n-1) + a(n-2) + a(n-4).

Original entry on oeis.org

3, 2, 2, 5, 10, 17, 29, 51, 90, 158, 277, 486, 853, 1497, 2627, 4610, 8090, 14197, 24914, 43721, 76725, 134643, 236282, 414646, 727653, 1276942, 2240877, 3932465, 6900995, 12110402, 21252274, 37295141, 65448410, 114853953, 201554637, 353703731, 620706778
Offset: 0

Views

Author

N. J. A. Sloane, Jul 11 2015

Keywords

Comments

Also the number of maximal independent vertex sets (and minimal vertex covers) in the n-gear graph. - Eric W. Weisstein, May 25 2017
Also the number of chordless cycles in the n-antiprism graph for n >= 4. - Eric W. Weisstein, Jan 02 2018

References

  • R. K. Guy, Letter to N. J. A. Sloane, Feb 05 1986.

Crossrefs

Programs

  • Haskell
    a259967 n = a259967_list !! n
    a259967_list = 3 : 2 : 2 : 5 : zipWith3 (((+) .) . (+))
       a259967_list (drop 2 a259967_list) (drop 3 a259967_list)
    -- Reinhard Zumkeller, Jul 12 2015
    
  • Magma
    I:=[3,2,2,5]; [n le 4 select I[n] else Self(n-1)+Self(n-2)+Self(n-4): n in [1..40]]; // Vincenzo Librandi, Sep 26 2017
  • Maple
    f:= gfun:-rectoproc({-a(n+3)+2*a(n+2)-a(n+1)+a(n), a(0) = 3, a(1) = 2, a(2) = 2},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Jul 18 2016
  • Mathematica
    Abs @ CoefficientList[Series[(x - 1) (x - 3)/(-1 + 2 x - x^2 + x^3), {x, 0, 36}], x] (* Michael De Vlieger, Jul 18 2016 *)
    LinearRecurrence[{2, -1, 1}, {2, 2, 5}, 20] (* Eric W. Weisstein, May 25 2017 *)
    Table[RootSum[-1 + # - 2 #^2 + #^3 &, #^n &], {n, 20}] (* Eric W. Weisstein, May 25 2017 *)
    RootSum[-1 + # - 2 #^2 + #^3 &, #^Range[0, 20] &] (* Eric W. Weisstein, Jan 02 2018 *)
  • PARI
    x='x+O('x^50); Vec((x-1)*(x-3)/(1-2*x+x^2-x^3)) \\ G. C. Greubel, May 24 2017
    

Formula

G.f.: (x-1)*(x-3) / (1 -2*x +x^2 -x^3). - R. J. Mathar, Jul 15 2015
a(n) = -4*A005314(n) +3*A005314(n+1) +A005314(n-1). - R. J. Mathar, Jul 15 2015
a(n) = Sum_{i=1..3} r_i^n where r_i are the roots of x^3-2*x^2+x-1. - Robert Israel, Jul 18 2016
a(n) = A109377(n-2) for n > 1. - Georg Fischer, Oct 09 2018