A260260 a(n) = n*(16*n^2 - 21*n + 7)/2.
0, 1, 29, 132, 358, 755, 1371, 2254, 3452, 5013, 6985, 9416, 12354, 15847, 19943, 24690, 30136, 36329, 43317, 51148, 59870, 69531, 80179, 91862, 104628, 118525, 133601, 149904, 167482, 186383, 206655, 228346, 251504, 276177, 302413, 330260, 359766, 390979
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- OEIS Wiki, Figurate numbers.
- Wikipedia, Polygonal numbers: Table of values.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[n*(16*n^2-21*n+7)/2: n in [0..40]];
-
Mathematica
Table[n (16 n^2 - 21 n + 7)/2, {n, 0, 40}] LinearRecurrence[{4,-6,4,-1},{0,1,29,132},40] (* Harvey P. Dale, May 08 2025 *)
-
PARI
vector(40, n, n--; n*(16*n^2-21*n+7)/2)
-
Sage
[n*(16*n^2-21*n+7)/2 for n in (0..40)]
Formula
G.f.: x*(1 + 25*x + 22*x^2)/(1 - x)^4. [corrected by Georg Fischer, May 10 2019]
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n >= 4. - Wesley Ivan Hurt, Dec 18 2020
E.g.f.: exp(x)*x*(2 + 27*x + 16*x^2)/2. - Elmo R. Oliveira, Aug 08 2025
Comments