A260352 Numbers n such that both 2*n^2+11 and 2*(n+1)^2+11 are prime.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 18, 19, 23, 28, 29, 30, 41, 42, 49, 62, 69, 70, 94, 95, 108, 123, 136, 145, 151, 152, 189, 190, 204, 212, 215, 223, 227, 276, 277, 278, 281, 290, 291, 294, 314, 328, 342, 353, 367, 368, 372, 405, 410, 436, 488, 497
Offset: 1
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A092968.
Programs
-
Magma
[n: n in [0..600]| IsPrime( 2*n^2+11) and IsPrime(2*(n+1)^2+11)]; // Vincenzo Librandi, Jul 26 2015
-
Mathematica
Select[Range[0, 600], PrimeQ[2 #^2 + 11] && PrimeQ[2 (# + 1)^2 + 11] &] (* Vincenzo Librandi, Jul 26 2015 *)
-
PARI
isok(n) = isprime(2*n^2+11) && isprime(2*(n+1)^2+11); \\ Michel Marcus, Jul 26 2015
Comments