cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A066803 a(n) = gcd(2^n + 1, 3^n + 1).

Original entry on oeis.org

1, 5, 1, 1, 1, 5, 1, 1, 19, 25, 1, 1, 1, 145, 1, 1, 1, 5, 1, 1, 43, 5, 1, 97, 1, 265, 19, 1, 1, 25, 1, 1, 67, 5, 1, 1, 1, 5, 1, 1, 1, 145, 1, 1, 19, 5, 1, 1, 1, 12625, 307, 1, 1, 5, 1, 1, 1, 5, 1, 241, 1, 5, 817, 1, 1, 5, 1, 1, 139, 725, 1, 55969, 1, 745, 1, 1, 1, 265, 1, 1, 3097, 5, 499
Offset: 1

Views

Author

Benoit Cloitre, Jan 18 2002

Keywords

Comments

a(n) divides a(k*n) if k is odd. - Robert Israel, Nov 15 2015
Conjecture: a(2^k) = 1 for k != 1. That is to say, there is no prime p > 5 such that ord(2,p) and ord(3,p) is the same power of 2, where ord(a,p) is the multiplicative order of a modulo p. - Jianing Song, Nov 20 2021

Crossrefs

Cf. A000051 (2^n+1), A034472 (3^n+1), A260674, A349722.

Programs

  • Maple
    seq(igcd(2^n+1, 3^n+1), n=1..100); # Robert Israel, Nov 15 2015
  • Mathematica
    Table[GCD[3^n+1,2^n+1],{n,90}] (* Harvey P. Dale, Dec 03 2012 *)
  • PARI
    a(n) = gcd(3^n + 1, 2^n + 1); \\ Harry J. Smith, Mar 28 2010
    
  • Python
    from math import gcd
    def a(n): return gcd(2**n + 1, 3**n + 1)
    print([a(n) for n in range(1, 84)]) # Michael S. Branicky, Nov 20 2021

Formula

a(n) = gcd(A000051(n), A034472(n)). - Michel Marcus, Nov 15 2015

A349722 Primes p such that the greatest common divisor of 2^p+1 and 3^p+1 is composite.

Original entry on oeis.org

2243399, 2334547, 2743723, 3932207, 4623107, 4716343, 5482423, 5993411, 6490151, 7156769, 7187743, 8795167, 9026987, 9608843, 9923209
Offset: 1

Views

Author

Michel Marcus, Nov 27 2021

Keywords

Crossrefs

Subsequence of A260674.
Cf. A066803.

Programs

  • PARI
    isok(p) = if (isprime(p), my(g=gcd(2^p+1, 3^p+1)); (g>1) && !isprime(g));

Extensions

a(4)-a(7) after update of Rivera link from Martin Ehrenstein, Dec 04 2021
a(8)-a(9) from Shyam Sunder Gupta, Dec 04 2021
a(10)-a(15) from Martin Ehrenstein, Dec 05 2021
Showing 1-2 of 2 results.