cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A260827 Primes having only {0, 5, 7} as digits.

Original entry on oeis.org

5, 7, 557, 577, 757, 5077, 5507, 5557, 7057, 7507, 7577, 7757, 50077, 50707, 50777, 55057, 57077, 57557, 70507, 75557, 75577, 75707, 77557, 500057, 500777, 505777, 507077, 507557, 507757, 550007, 550577, 550757, 555077, 555557, 555707, 557057, 570077, 575077
Offset: 1

Views

Author

Vincenzo Librandi, Aug 01 2015

Keywords

Crossrefs

A020467 is a subsequence.
Cf. Primes that contain only the digits (k,5,7): this sequence (k=0), A260828 (k=1), A214705 (k=2), A087363 (k=3), A217039 (k=4), A260829 (k=6), A260830 (k=8), A260831 (k=9).
Cf. A000040.

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^6) | Set(Intseq(p)) subset [0,5,7]];
    
  • Mathematica
    Select[Prime[Range[2 10^5]], Complement[IntegerDigits[#], {0, 5, 7}]=={} &]
  • Python
    from sympy import isprime
    from sympy.utilities.iterables import multiset_permutations
    def aupton(terms):
      n, digits, alst = 0, 1, []
      while len(alst) < terms:
        mpstr = "".join(d*digits for d in "057")
        for mp in multiset_permutations(mpstr, digits):
          if mp[0] == "0": continue
          t = int("".join(mp))
          if isprime(t): alst.append(t)
          if len(alst) == terms: break
        else: digits += 1
      return alst
    print(aupton(38)) # Michael S. Branicky, May 07 2021

A261181 Primes that contain only the digits (0, 7, 9).

Original entry on oeis.org

7, 79, 97, 709, 797, 907, 977, 997, 7079, 7907, 9007, 9907, 70009, 70079, 70099, 70709, 70979, 70997, 70999, 77797, 77977, 77999, 79777, 79907, 79979, 79997, 79999, 90007, 90709, 90907, 90977, 90997, 97007, 97777, 99079, 99707, 99709, 99907, 700079
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2015

Keywords

Comments

A020471 is a subsequence.

Crossrefs

Cf. Primes that contain only the digits (k,7,9): this sequence (k=0), A260893 (k=1), A261182 (k=2), A260382 (k=3), A261183 (k=4), A260831 (k=5), A261184 (k=6), A106110 (k=8).

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^5) | Set(Intseq(p)) subset [0, 7, 9]];
  • Mathematica
    Select[Prime[Range[6 10^4]], Complement[IntegerDigits[#], {0, 7, 9}] == {} &]
    Select[FromDigits/@Tuples[{0,7,9},6],PrimeQ] (* Harvey P. Dale, Aug 09 2024 *)

A020467 Primes that contain digits 5 and 7 only.

Original entry on oeis.org

5, 7, 557, 577, 757, 5557, 7577, 7757, 57557, 75557, 75577, 77557, 555557, 575557, 575777, 577757, 757577, 775757, 775777, 5555777, 5557757, 5575777, 5577577, 5755577, 5775557, 5777557, 7575577, 7577777, 55555777, 55575757, 55755757, 55757777, 57557557
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A030096, A260827-A260831, and A284380.

Programs

  • Magma
    [p: p in PrimesUpTo(55755757 ) | Set(Intseq(p)) subset [5, 7]];// Vincenzo Librandi, Jul 27 2012
    
  • Mathematica
    Flatten[Table[Select[FromDigits/@Tuples[{5,7},n],PrimeQ],{n,8}]]
  • Python
    from sympy import isprime
    from sympy.utilities.iterables import multiset_permutations
    def aupton(terms):
      n, digits, alst = 0, 1, []
      while len(alst) < terms:
        mpstr = "".join(d*digits for d in "57")
        for mp in multiset_permutations(mpstr, digits):
          t = int("".join(mp))
          if isprime(t): alst.append(t)
          if len(alst) == terms: break
        else: digits += 1
      return alst
    print(aupton(33)) # Michael S. Branicky, May 07 2021

A386080 Primes having only {0, 5, 7, 9} as digits.

Original entry on oeis.org

5, 7, 59, 79, 97, 509, 557, 577, 599, 709, 757, 797, 907, 977, 997, 5009, 5059, 5077, 5099, 5507, 5557, 5779, 7057, 7079, 7507, 7559, 7577, 7757, 7759, 7907, 9007, 9059, 9907, 50077, 50599, 50707, 50777, 50909, 50957, 55009, 55057, 55079, 55579, 55799, 55997
Offset: 1

Views

Author

Jason Bard, Jul 16 2025

Keywords

Crossrefs

Supersequence of A260827, A260831, A261181, A385769.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 5, 7, 9]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 5, 7, 9}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 5, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0579"), 41))) # uses function/imports in A385776
    

A386133 Primes having only {1, 5, 7, 9} as digits.

Original entry on oeis.org

5, 7, 11, 17, 19, 59, 71, 79, 97, 151, 157, 179, 191, 197, 199, 557, 571, 577, 599, 719, 751, 757, 797, 911, 919, 971, 977, 991, 997, 1117, 1151, 1171, 1511, 1559, 1571, 1579, 1597, 1759, 1777, 1951, 1979, 1997, 1999, 5119, 5171, 5179, 5197, 5519, 5557, 5591
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A260828, A260831, A260893, A385781.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 5, 7, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 5, 7, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 5, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1579"), 41))) # uses function/imports in A385776
    

A386163 Primes having only {2, 5, 7, 9} as digits.

Original entry on oeis.org

2, 5, 7, 29, 59, 79, 97, 227, 229, 257, 277, 557, 577, 599, 727, 757, 797, 929, 977, 997, 2297, 2557, 2579, 2729, 2777, 2797, 2927, 2957, 2999, 5227, 5279, 5297, 5527, 5557, 5779, 5927, 7229, 7297, 7529, 7559, 7577, 7727, 7757, 7759, 7927, 9227, 9257, 9277, 9929
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A214705, A260831, A261182, A385786.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [2, 5, 7, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{2, 5, 7, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [2, 5, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("2579"), 41))) # uses function/imports in A385776
    

A386182 Primes having only {3, 5, 7, 9} as digits.

Original entry on oeis.org

3, 5, 7, 37, 53, 59, 73, 79, 97, 337, 353, 359, 373, 379, 397, 557, 577, 593, 599, 733, 739, 757, 773, 797, 937, 953, 977, 997, 3359, 3373, 3533, 3539, 3557, 3559, 3593, 3733, 3739, 3779, 3793, 3797, 5333, 5393, 5399, 5557, 5573, 5737, 5779, 5939, 5953, 7333
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A087363, A260227, A260382, A260831.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [3, 5, 7, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{3, 5, 7, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [3, 5, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("3579"), 41))) # uses function/imports in A385776
    

A386191 Primes having only {4, 5, 7, 9} as digits.

Original entry on oeis.org

5, 7, 47, 59, 79, 97, 449, 457, 479, 499, 547, 557, 577, 599, 757, 797, 947, 977, 997, 4447, 4457, 4547, 4549, 4597, 4759, 4799, 4957, 4999, 5449, 5477, 5479, 5557, 5749, 5779, 7457, 7459, 7477, 7499, 7547, 7549, 7559, 7577, 7757, 7759, 7949, 9479, 9497, 9547
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A217039, A260831, A261183, A385793.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [4, 5, 7, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{4, 5, 7, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [4, 5, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("4579"), 41))) # uses function/imports in A385776
    

A386197 Primes having only {5, 6, 7, 9} as digits.

Original entry on oeis.org

5, 7, 59, 67, 79, 97, 557, 569, 577, 599, 659, 677, 757, 769, 797, 967, 977, 997, 5557, 5569, 5657, 5659, 5669, 5779, 6569, 6577, 6599, 6659, 6679, 6779, 6959, 6967, 6977, 6997, 7559, 7577, 7669, 7699, 7757, 7759, 9677, 9679, 9697, 9767, 9769, 9967, 55579, 55667
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A260829, A260831, A261184, A385797.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [5, 6, 7, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{5, 6, 7, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [5, 6, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("5679"), 41))) # uses function/imports in A385776
    

A386199 Primes having only {5, 7, 8, 9} as digits.

Original entry on oeis.org

5, 7, 59, 79, 89, 97, 557, 577, 587, 599, 757, 787, 797, 857, 859, 877, 887, 977, 997, 5557, 5779, 5857, 5879, 5897, 5987, 7559, 7577, 7589, 7757, 7759, 7789, 7877, 7879, 8597, 8599, 8779, 8887, 8999, 9587, 9787, 9857, 9859, 9887, 55579, 55589, 55787, 55799, 55889
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A106110, A260830, A260831, A385798.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [5, 7, 8, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{5, 7, 8, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [5, 7, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("5789"), 41))) # uses function/imports in A385776
    
Showing 1-10 of 10 results.