cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260918 Number of squares of all sizes in polyominoes obtained by union of two pyramidal figures (A092498) with intersection equals A002623.

Original entry on oeis.org

0, 1, 5, 15, 33, 60, 100, 154, 224, 313, 423, 555, 713, 898, 1112, 1358, 1638, 1953, 2307, 2701, 3137, 3618, 4146, 4722, 5350, 6031, 6767, 7561, 8415, 9330, 10310, 11356, 12470, 13655, 14913, 16245, 17655, 19144, 20714, 22368, 24108, 25935, 27853, 29863
Offset: 0

Views

Author

Luce ETIENNE, Aug 04 2015

Keywords

Comments

The resulting polyforms are n*(3*n-1)/2-polyominoes.
Also they are 6*n-gons with n>1.
Schäfli's notation for figure corresponding to a(1): 4.

Examples

			a(1)=1, a(2)=5, a(3)=12+3=15, a(4)=22+9+2=33, a(5)=35+18+7=60, a(6)=51+30+15+4=100.
		

Crossrefs

Programs

  • Magma
    [(52*n^3+90*n^2+20*n-3*(32*Floor((n+1)/3)+3*(1-(-1)^n)))/144: n in [0..50]]; // Vincenzo Librandi, Aug 12 2015
  • Mathematica
    Table[(52 n^3 + 90 n^2 + 20 n - 3 (32 Floor[(n + 1) / 3] + 3 (1 - (-1)^n))) / 144, {n, 0, 45}] (* Vincenzo Librandi, Aug 12 2015 *)
  • PARI
    concat(0, Vec(x*(4*x^3+5*x^2+3*x+1)/((x-1)^4*(x+1)*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Aug 08 2015
    

Formula

a(n) = A258440(n) - A000212(n+1).
a(n) = (1/8)*((Sum_{i=0..floor(2*n/3)} (4*n+1-6*i-(-1)^i)*(4*n-1-6*i+(-1)^i)) - (Sum_{j=0..(2*n-1+(-1)^n)/4} (2*n+1-(-1)^n-4*j)*(2*n+1+(-1)^n-4*j))).
a(n) = (52*n^3+90*n^2+20*n-3*(32*floor((n+1)/3)+3*(1-(-1)^n)))/144.
G.f.: x*(4*x^3+5*x^2+3*x+1) / ((x-1)^4*(x+1)*(x^2+x+1)). - Colin Barker, Aug 08 2015
E.g.f.: (3*exp(x)*x*(65 + x*(123 + 26*x)) + 32*sqrt(3)*exp(-x/2)*sin(sqrt(3)*x/2) - 27*sinh(x))/216. - Stefano Spezia, Nov 15 2024

Extensions

Two repeated terms deleted by Colin Barker, Aug 08 2015