A261052 Expansion of Product_{k>=1} (1+x^k)^(k!).
1, 1, 2, 8, 31, 157, 915, 6213, 48240, 423398, 4147775, 44882107, 531564195, 6837784087, 94909482330, 1413561537884, 22482554909451, 380269771734265, 6815003300096013, 128992737080703803, 2571218642722865352, 53835084737513866662, 1181222084520177393143
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(i!, j)*b(n-i*j,i-1), j=0..n/i))) end: a:= n-> b(n$2): seq(a(n), n=0..25); # Alois P. Heinz, Aug 08 2015
-
Mathematica
nmax=25; CoefficientList[Series[Product[(1+x^k)^(k!),{k,1,nmax}],{x,0,nmax}],x]
-
PARI
seq(n)={Vec(exp(x*Ser(dirmul(vector(n, n, n!), -vector(n, n, (-1)^n/n)))))} \\ Andrew Howroyd, Jun 22 2018
Formula
a(n) ~ n! * (1 + 1/n + 2/n^2 + 10/n^3 + 57/n^4 + 401/n^5 + 3382/n^6 + 33183/n^7 + 371600/n^8 + 4685547/n^9 + 65792453/n^10).
Comments