A259934 Infinite sequence starting with a(0)=0 such that A049820(a(k)) = a(k-1) for all k>=1, where A049820(n) = n - (number of divisors of n).
0, 2, 6, 12, 18, 22, 30, 34, 42, 46, 54, 58, 62, 70, 78, 90, 94, 102, 106, 114, 118, 121, 125, 129, 144, 152, 162, 166, 174, 182, 190, 194, 210, 214, 222, 230, 236, 242, 250, 254, 270, 274, 282, 294, 298, 302, 310, 314, 330, 342, 346, 354, 358, 366, 374, 390, 394, 402, 410, 418, 426, 434, 442, 446, 462, 466, 474, 486, 494, 510, 522, 530, 546, 558, 562, 566, 574, 582, 590
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..64800
- M. Alekseyev et al., Apparently unique infinite sequences related to the sum of divisors, Discussion in SeqFan mailing list, 2015.
- Michael De Vlieger, Poster illustrating A259934 and A263267
- V. S. Guba et al., Sequence and divisors, 2015. (in Russian)
Crossrefs
Programs
-
Maple
N:= 10^4: # to get "guaranteed unique" terms <= N S:= Vector(N,datatype=integer[1]): for n from N+1 to 2*N do k:= n - numtheory:-tau(n); if k <= N then S[k]:= S[k]+1; B[k]:= n; fi; od: for n from N to 3 by -1 do if S[n] >= 1 then k:= n - numtheory:-tau(n); S[k]:= S[k]+1; B[k]:= n; fi od: A[0]:= 0: A[1]:= 2: for n from 2 do b:= B[A[n-1]]; if b > N or S[b] > 1 then break fi; A[n]:= b; od: seq(A[i],i=0..n-1); # Robert Israel, Jul 09 2015
-
Mathematica
NN = 10^4; (* to get "guaranteed unique" terms <= NN *) Clear[A, B, S]; S[]=0; For[n = NN+1, n <= 2*NN, n++, k = n-DivisorSigma[0, n]; If[k <= NN, S[k] = S[k]+1; B[k]=n]]; For[n=NN, n >= 3, n--, If[S[n] >= 1 , k = n-DivisorSigma[0, n]; S[k] = S[k]+1; B[k]=n]]; A[0]=0; A[1]=2; For[n=2, True, n++, b = B[A[n-1]]; If[b>NN || S[b]>1, Break[]]; A[n]=b]; Table[A[i], {i, 0, n-1}] (* _Jean-François Alcover, Jul 22 2015, after Robert Israel *)
Comments