cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A261205 Numbers k such that floor(k^(1/m)) divides k for all integers m >= 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 16, 20, 24, 30, 36, 42, 48, 64, 72, 80, 120, 210, 240, 288, 324, 420, 528, 552, 576, 600, 624, 900, 1260, 1764, 1848, 1980, 3024, 6480, 8100, 8280, 11880, 14160, 14280, 14400, 14520, 14640, 28560, 43680, 44520, 46872, 50400, 175560, 331200, 346920, 491400, 809100, 3418800, 4772040, 38937600, 203918400, 2000862360
Offset: 1

Views

Author

Yan A. Denenberg and Max Alekseyev, Aug 11 2015

Keywords

Comments

Is this a finite sequence?
There are no other terms below 10^23. - Giovanni Resta, Aug 13 2015

Examples

			From _Michel Marcus_, Aug 13 2015: (Start)
For k=1 to 9, we have the following floored roots:
  k=1: 1, 1, ...
  k=2: 2, 1, 1, ...
  k=3: 3, 1, 1, ...
  k=4: 4, 2, 1, 1, ...
  k=5: 5, 2, 1, 1, ...
  k=6: 6, 2, 1, 1, ...
  k=7: 7, 2, 1, 1, ...
  k=8: 8, 2, 2, 1, 1, ...
  k=9: 9, 3, 2, 1, 1, ...
where one can see that 5, 7 and 9 are not terms. (End)
		

Crossrefs

Subsequence of A006446.

Programs

  • Mathematica
    fQ[n_] := Block[{d, k = 2, lst = {}}, While[d = Floor[n^(1/k)]; d > 1, AppendTo[lst, d]; k++]; Union[ IntegerQ@# & /@ (n/Union[lst])] == {True}]; k = 4; lst = {1, 2, 3}; While[k < 10^6, If[fQ@ k, AppendTo[lst, k]; Print@ k]; k++]; lst (* Robert G. Wilson v, Aug 15 2015 *)
  • PARI
    is(n) = my(k,t); k=2; while( (t=sqrtnint(n, k)) > 1, if(n%t, return(0)); k++); 1
    n=1; while(n<10^5,if(is(n),print1(n,", "));n++) /* Able to generate terms < 10^5 */ \\ Derek Orr, Aug 12 2015

A261342 Numbers n such that either floor(n^(1/k)) or ceiling(n^(1/k)) divides n for all integers k >= 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 15, 16, 20, 24, 30, 36, 42, 48, 56, 63, 64, 72, 80, 90, 100, 120, 132, 144, 156, 168, 195, 210, 224, 240, 288, 324, 360, 400, 420, 440, 528, 552, 576, 600, 624, 675, 702, 756, 840, 870, 900, 930, 960, 1056, 1155, 1260, 1332, 1368, 1560, 1680, 1764, 1848, 1980, 2352, 2600, 2704
Offset: 1

Views

Author

Max Alekseyev, Aug 15 2015

Keywords

Comments

Largest known term is a(278) = 8947091986560.
If it exists, a(279) > 10^16.
Is this sequence finite?

Crossrefs

Contains A261205, A261206, A261341 as subsequences.
Subsequence of A006446.

Programs

  • PARI
    { isA261342(n) = my(k,t1,t2); k=2; until(t2<=2, t1=floor(sqrtn(n+.5,k)); t2=ceil(sqrtn(n-.5,k)); if(n%t1 && n%t2, return(0)); k++); 1; }

A261341 Numbers n such that round(n^(1/k)) divides n for all integers k>=1.

Original entry on oeis.org

1, 2, 4, 6, 12, 30, 36, 42, 72, 240, 420, 600, 900, 1560, 1764, 3600, 6084, 8100, 46440, 1742400, 4062240, 35814240
Offset: 1

Views

Author

Max Alekseyev, Aug 15 2015

Keywords

Comments

There are no other terms below 10^16.
Is this a finite sequence?

Crossrefs

Subsequence of A006446 and A261342.

Programs

  • Mathematica
    isA[n_] :=
    Block[{t},
      For[k = 2, (t = Floor[1/2 + n^(1/k)]) >= 2, k++,
       If[Mod[n, t] != 0, Return[False]]]; Return[True]]
    Select[Range[1, 100000], isA[#] &] (* Julien Kluge, Apr 04 2016 *)
  • PARI
    { isA261341(n) = my(k,t); k=2; until(t<=2, t=round(sqrtn(n,k)); if(n%t,return(0)); k++); 1; }

A261417 Numbers n such that both ceiling(sqrt(n)) and ceiling(n^(1/3)) divide n.

Original entry on oeis.org

1, 2, 4, 6, 9, 12, 36, 56, 64, 90, 100, 110, 132, 144, 156, 210, 400, 576, 702, 729, 870, 900, 930, 1056, 1089, 1122, 1332, 1560, 2352, 2450, 2970, 3600, 4032, 4096, 4556, 4624, 4692, 5112, 5184, 5256, 5852, 7140, 8190, 9702, 9900, 12432, 14400, 15500, 15625, 16770, 16900, 17030, 18090, 18225, 18360, 19740
Offset: 1

Views

Author

N. J. A. Sloane, Aug 26 2015

Keywords

Crossrefs

Intersection of A002620 and A261011. Contains A261206 as a subsequence.

Programs

  • Magma
    [n: n in [1..2000] | n mod Ceiling((n^(1/2))) eq 0 and n mod Ceiling((n^(1/3))) eq 0 ];
    
  • Mathematica
    Select[Range[200000], Mod[#, Ceiling[#^(1/2)]] == Mod[#, Ceiling[#^(1/3)]] == 0 &] (* Vincenzo Librandi, Aug 21 2016 *)
  • PARI
    is(n) = Mod(n, ceil(sqrt(n)))==0 && Mod(n, ceil(n^(1/3)))==0 \\ Felix Fröhlich, Aug 21 2016
Showing 1-4 of 4 results.