A261540 a(n) = n^7 + 7*n^5 + 14*n^3 + 7*n.
0, 29, 478, 4287, 24476, 101785, 337434, 946043, 2333752, 5206581, 10714070, 20633239, 37597908, 65378417, 109216786, 176222355, 275832944, 420346573, 625528782, 911300591, 1302512140, 1829807049, 2530582538, 3450050347, 4642403496, 6172093925, 8115226054
Offset: 0
Links
- Raphael Ranna, Table of n, a(n) for n = 0..100
- Wikipedia, Metallic mean
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Crossrefs
Programs
-
Magma
[n^7 + 7*n^5 + 14*n^3 + 7*n: n in [0..30]]; // Vincenzo Librandi, Aug 24 2015
-
Mathematica
Table[n^7 + 7 n^5 + 14 n^3 + 7 n, {n, 0, 30}] (* Bruno Berselli, Aug 24 2015 *) LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 29, 478, 4287, 24476, 101785, 337434, 946043}, 30] (* Vincenzo Librandi, Aug 24 2015 *)
-
PARI
a(n)=n^7+7*n^5+14*n^3+7*n \\ Charles R Greathouse IV, Aug 24 2015
-
Sage
[n^7+7*n^5+14*n^3+7*n for n in (0..30)] # Bruno Berselli, Aug 24 2015
Formula
a(n) = -a(-n) = ( (n+sqrt(n^2+4))/2 )^7 - 1/( (n+sqrt(n^2+4))/2 )^7.
G.f.: x*(29 + 246*x + 1275*x^2 + 1940*x^3 + 1275*x^4 + 246*x^5 + 29*x^6)/(1 - x)^8. - Bruno Berselli, Aug 24 2015
Extensions
Offset changed from 1 to 0 and initial 0 added by Bruno Berselli, Aug 25 2015
Comments