cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Raphael Ranna

Raphael Ranna's wiki page.

Raphael Ranna has authored 5 sequences.

A343007 Relative position of the average value between two consecutive partial sums of the Leibniz formula for Pi.

Original entry on oeis.org

6, 13, 26, 41, 62, 85, 114, 145, 182, 221, 266, 313, 366, 421, 482, 545, 614, 685, 762, 841, 926, 1013, 1106, 1201, 1302, 1405, 1514, 1625, 1742, 1861, 1986, 2113, 2246, 2381, 2522, 2665, 2814, 2965, 3122, 3281, 3446, 3613, 3786, 3961, 4142, 4325, 4514, 4705
Offset: 1

Author

Raphael Ranna, Apr 02 2021

Keywords

Comments

Define L(n) to be the n-th partial sum of the Leibniz formula Pi = 4 - 4/3 + 4/5 - 4/7 + ..., i.e., L(n) = Sum_{j=1..n} 4*(-1)^(j+1)/(2*j-1). For every positive integer n, L(n+1) is closer to Pi than L(n) is. If we let V be the average of the two consecutive partial sums L(n) and L(n+1), then the partial sums that lie closest to V are L(a(n)-1) and L(a(n)+1) (one of which is above V, the other below).

Examples

			The first several partial sums are as follows:
  n      L(n)
  -  ------------
  1  4.0000000000
  2  2.6666666...
  3  3.4666666...
  4  2.8952380...
  5  3.3396825...
  6  2.9760461...
  7  3.2837384...
  8  3.0170718...
.
For n=1, the average of the partial sums L(1) and L(2) is V = (L(1) + L(2))/2 = (4 + 2.6666666...)/2 = 3.3333333...; the two partial sums closest to V are L(5)=3.3396825... and L(7)=3.2837384..., and V lies in the interval between them, so a(1)=6.
The formula as it is written works for all data in the sequence, but it needs to be proven that it works for all possible integer values of n.
		

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x (6 + x + x^3)/((1 + x) (1 - x)^3), {x, 0, 48}], x] (* Michael De Vlieger, Apr 05 2021 *)

Formula

a(1) = 6; a(n) = a(n-1) + r(n), where r(n) = A047550(n) = 4*n - (-1)^n.
G.f.: x*(6 + x + x^3)/((1 + x)*(1 - x)^3). - Jinyuan Wang, Apr 03 2021
From Stefano Spezia, Apr 03 2021: (Start)
a(n) = (3 + (-1)^(n+1) + 4*n + 4*n^2)/2.
a(2*n) = A102083(n).
a(2*n-1) = A254527(n). (End)

A275464 a(n) = n - A038802(n).

Original entry on oeis.org

0, 0, 0, 3, 1, 1, 6, 2, 2, 9, 3, 10, 12, 5, 5, 15, 15, 7, 18, 8, 8, 21, 9, 21, 24, 11, 25, 27, 13, 13, 30, 30, 15, 33, 16, 16, 36, 35, 18, 39, 19, 40, 42, 21, 42, 45, 45, 24, 48, 25, 25, 51, 26, 26, 54, 27, 55, 57, 56, 56, 60, 60, 33, 63, 34, 63, 66, 36, 36, 69, 67, 70, 72, 40, 40, 75, 75, 42, 78, 77, 44, 81
Offset: 1

Author

Raphael Ranna, Jul 28 2016

Keywords

Examples

			9 = (2^0)*(3^2), resulting in 1 zero. So, a(4) = 4 - 1 = 3.
		

Crossrefs

Cf. A038802.

Programs

  • Mathematica
    Table[f = FactorInteger[2 n + 1]; n - (PrimePi[f[[1, 1]]] - 1), {n, 100}]
  • PARI
    lpf(n)=factor(n)[1,1]
    a(n)=n - primepi(lpf(2*n+1)) + 1 \\ Charles R Greathouse IV, Jul 29 2016

Formula

a(n) = n - (A049084(A020639(2n+1)) - 1).
a(n) = n + O(n/log n). - Charles R Greathouse IV, Jul 29 2016

Extensions

Duplicate a(44)-a(45) removed by Andrew Howroyd, Feb 23 2018

A261574 a(n) = n*(n^2 + 3)*(n^6 + 6*n^4 + 9*n^2 + 3).

Original entry on oeis.org

0, 76, 2786, 46764, 439204, 2744420, 12813606, 48229636, 153992264, 432083484, 1092730090, 2537720636, 5489037036, 11179326964, 21624372014, 40001698260, 71163830416, 122319408236, 203920464114, 330799604044, 523606640180, 810600392196, 1229857906486
Offset: 0

Author

Raphael Ranna, Aug 24 2015

Keywords

Comments

Also numbers of the form (n-th metallic mean)^9 - 1/(n-th metallic mean)^9, see link to Wikipedia.

Programs

  • Magma
    [n*(n^2+3)*(n^6+6*n^4+9*n^2+3): n in [0..25]]; // Bruno Berselli, Aug 25 2015
  • Mathematica
    Table[n (n^2 + 3) (n^6 + 6 n^4 + 9 n^2 + 3), {n, 0, 25}] (* Bruno Berselli, Aug 25 2015 *)
  • PARI
    concat(0, Vec(2*x*(38*x^8 +1013*x^7 +11162*x^6 +43907*x^5 +69200*x^4 +43907*x^3 +11162*x^2 +1013*x +38) / (x -1)^10 + O(x^50))) \\ Colin Barker, Aug 25 2015
    

Formula

a(n) = -a(-n) = ( (n+sqrt(n^2+4))/2 )^9-1/( (n+sqrt(n^2+4))/2 )^9.
G.f.: 2*x*(38*x^8 +1013*x^7 +11162*x^6 +43907*x^5 +69200*x^4 +43907*x^3 +11162*x^2 +1013*x +38) / (x -1)^10. - Colin Barker, Aug 25 2015

Extensions

Formula in Name by Colin Barker, Aug 25 2015
Offset changed from 1 to 0 and initial 0 added by Bruno Berselli, Aug 25 2015

A261540 a(n) = n^7 + 7*n^5 + 14*n^3 + 7*n.

Original entry on oeis.org

0, 29, 478, 4287, 24476, 101785, 337434, 946043, 2333752, 5206581, 10714070, 20633239, 37597908, 65378417, 109216786, 176222355, 275832944, 420346573, 625528782, 911300591, 1302512140, 1829807049, 2530582538, 3450050347, 4642403496, 6172093925, 8115226054
Offset: 0

Author

Raphael Ranna, Aug 24 2015

Keywords

Comments

Also numbers of the form (n-th metallic mean)^7 - 1/(n-th metallic mean)^7, see link to Wikipedia.

Programs

  • Magma
    [n^7 + 7*n^5 + 14*n^3 + 7*n: n in [0..30]]; // Vincenzo Librandi, Aug 24 2015
    
  • Mathematica
    Table[n^7 + 7 n^5 + 14 n^3 + 7 n, {n, 0, 30}] (* Bruno Berselli, Aug 24 2015 *)
    LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 29, 478, 4287, 24476, 101785, 337434, 946043}, 30] (* Vincenzo Librandi, Aug 24 2015 *)
  • PARI
    a(n)=n^7+7*n^5+14*n^3+7*n \\ Charles R Greathouse IV, Aug 24 2015
  • Sage
    [n^7+7*n^5+14*n^3+7*n for n in (0..30)] # Bruno Berselli, Aug 24 2015
    

Formula

a(n) = -a(-n) = ( (n+sqrt(n^2+4))/2 )^7 - 1/( (n+sqrt(n^2+4))/2 )^7.
G.f.: x*(29 + 246*x + 1275*x^2 + 1940*x^3 + 1275*x^4 + 246*x^5 + 29*x^6)/(1 - x)^8. - Bruno Berselli, Aug 24 2015

Extensions

Offset changed from 1 to 0 and initial 0 added by Bruno Berselli, Aug 25 2015

A261391 a(n) = n^5 + 5*n^3 + 5*n.

Original entry on oeis.org

0, 11, 82, 393, 1364, 3775, 8886, 18557, 35368, 62739, 105050, 167761, 257532, 382343, 551614, 776325, 1069136, 1444507, 1918818, 2510489, 3240100, 4130511, 5206982, 6497293, 8031864, 9843875, 11969386, 14447457, 17320268, 20633239, 24435150, 28778261, 33718432, 39315243, 45632114
Offset: 0

Author

Raphael Ranna, Aug 17 2015

Keywords

Comments

Also numbers of the form (n-th metallic mean)^5 - 1/(n-th metallic mean)^5, see link to Wikipedia.

Programs

  • Mathematica
    Array[#^5 + 5 #^3 + 5 # &, 34] (* Michael De Vlieger, Aug 18 2015 *)
    Table[n^5 + 5*n^3 + 5*n, {n,0, 50}] (* G. C. Greubel, Aug 21 2015 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,11,82,393,1364,3775},40] (* Harvey P. Dale, May 07 2018 *)
  • PARI
    concat(0, Vec(x*(11*x^4+16*x^3+66*x^2+16*x+11)/(x-1)^6 + O(x^100))) \\ Colin Barker, Aug 18 2015

Formula

a(n) = ( (n+sqrt(n^2+4))/2 )^5 - 1/( (n+sqrt(n^2+4))/2 )^5.
a(n) = -a(-n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Colin Barker, Aug 18 2015
G.f.: x*(11*x^4+16*x^3+66*x^2+16*x+11) / (x-1)^6. - Colin Barker, Aug 18 2015
E.g.f.: (x^5 + 15*x^4 + 70*x^3 + 120*x^2 + 71*x + 11)*e^x. - G. C. Greubel, Aug 21 2015

Extensions

Offset changed from 1 to 0, initial 0 added and b-file adapted from Bruno Berselli, Aug 25 2015