cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A003239 Number of rooted planar trees with n non-root nodes: circularly cycling the subtrees at the root gives equivalent trees.

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 80, 246, 810, 2704, 9252, 32066, 112720, 400024, 1432860, 5170604, 18784170, 68635478, 252088496, 930138522, 3446167860, 12815663844, 47820447028, 178987624514, 671825133648, 2528212128776, 9536895064400, 36054433810102, 136583761444364, 518401146543812
Offset: 0

Views

Author

Keywords

Comments

Also number of necklaces with 2*n beads, n white and n black (to get the correspondence, start at root, walk around outside of tree, use white if move away from the root, black if towards root).
Also number of terms in polynomial expression for permanent of generic circulant matrix of order n.
a(n) is the number of equivalence classes of n-compositions of n under cyclic rotation. (Given a necklace, split it into runs of white followed by a black bead and record the lengths of the white runs. This gives an n-composition of n.) a(n) is the number of n-multisets in Z mod n whose sum is 0. - David Callan, Nov 05 2003
a(n) is the number of cyclic equivalence classes of triangulations of a once-punctured n-gon. - Esther Banaian, May 06 2025

Examples

			As _David Callan_ said, a(n) is the number of n-multisets in Z mod n whose sum is 0. So for n = 4 the a(4)=10 multisets are (0, 0, 0, 0), (1, 1, 1, 1), (0, 1, 1, 2), (0, 0, 2, 2), (2, 2, 2, 2), (0, 0, 1, 3), (1, 2, 2, 3), (1, 1, 3, 3), (0, 2, 3, 3) and (3, 3, 3, 3). - _Boas Bakker_, Apr 21 2025
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 305 (see R(x)).
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973; page 80, Problem 3.13.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.112(b).

Crossrefs

Column k=2 of A208183.
Column k=1 of A261494.

Programs

  • Maple
    with(numtheory): A003239 := proc(n) local t1,t2,d; t2 := divisors(n); t1 := 0; for d in t2 do t1 := t1+phi(n/d)*binomial(2*d,d)/(2*n); od; t1; end;
    spec := [ C, {B=Union(Z,Prod(B,B)), C=Cycle(B)}, unlabeled ]; [seq(combstruct[count](spec, size=n), n=0..40)];
  • Mathematica
    a[n_] := Sum[ EulerPhi[n/k]*Binomial[2k, k]/(2n), {k, Divisors[n]}]; a[0] = 1; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 11 2012 *)
  • PARI
    C(n, k)=binomial(n,k);
    a(n) = if(n<=0, n==0, sumdiv(n, d, eulerphi(n/d) * C(2*d, d)) / (2*n) );
    /* or, second formula: */
    /* a(n) = if(n<=0, n==0, sumdiv(n, d, eulerphi(n/d) * C(2*d-1,d)) / n ); */
    /* Joerg Arndt, Oct 21 2012 */
    
  • SageMath
    def A003239(n):
        if n == 0: return 1
        return sum(euler_phi(n/d)*binomial(2*d, d)/(2*n) for d in divisors(n))
    print([A003239(n) for n in (0..29)]) # Peter Luschny, Dec 10 2020

Formula

a(n) = Sum_{d|n} (phi(n/d)*binomial(2*d, d))/(2*n) for n > 0.
a(n) = (1/n)*Sum_{d|n} (phi(n/d)*binomial(2*d-1, d)) for n > 0.
a(n) = A047996(2*n, n). - Philippe Deléham, Jul 25 2006
a(n) ~ 2^(2*n-1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 22 2015

Extensions

Sequence corrected and extended by Roderick J. Fletcher (yylee(AT)mail.ncku.edu.tw), Aug 1997
Additional comments from Michael Somos

A082936 a(n) = (1/(3*n))*Sum_{d|n, d even} phi(2*n/d)*binomial(3d/2,d).

Original entry on oeis.org

1, 1, 3, 10, 43, 201, 1038, 5538, 30667, 173593, 1001603, 5864750, 34769374, 208267320, 1258579654, 7663720710, 46976034379, 289628805623, 1794932468571, 11175157356522, 69864075597643, 438403736549145, 2760351032959050, 17433869214973754, 110420300879752990
Offset: 0

Views

Author

N. J. A. Sloane, May 26 2003

Keywords

Comments

a(n) = number of necklaces of n white beads and 2n black beads. - David Callan, Mar 28 2004

Crossrefs

Cf. A003239.
Column k=2 of A261494.

Programs

  • Maple
    with(numtheory): f := proc(n) local t1,d; t1 := 0; for d from 1 to n do if n mod d = 0 then if d mod 2 = 0 then t1 := t1+phi(n/d)*binomial(3*d/2,d) fi; fi; od; 2*t1/(3*n); end; # use with n even
  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#]*Binomial[3#, #]&]/(3n); a[0] = 1; Array[a, 30, 0] (* Jean-François Alcover, Dec 02 2015 *)
  • PARI
    C(n, k)=binomial(n,k);
    a(n) = if(n<=0, n==0, sumdiv(n, d, eulerphi(n/d) * C(3*d,d)) / (3*n) );
    /* or, second formula: */
    /* a(n) = if(n<=0, n==0, sumdiv(n, d, eulerphi(n/d) * C(3*d-1,d)) / (2*n) ); */
    /* Joerg Arndt, Oct 21 2012 */

Formula

From Joerg Arndt, Oct 21 2012: (Start)
a(n) = sum( d divides n, phi(n/d) * C(3*d,d) ) / (3*n) for n>=1, a(0)=1.
a(n) = sum( d divides n, phi(n/d) * C(3*d-1,d) ) / (2*n) for n>=1, a(0)=1.
a(n) = A047996(3*n,n).
(End)
a(n) ~ 3^(3*n) / (2^(2*n+1) * sqrt(3*Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 22 2015

Extensions

a(0)=1 prepended by Joerg Arndt, Oct 21 2012

A261497 Number of necklaces with n white beads and 3*n black beads.

Original entry on oeis.org

1, 1, 4, 19, 116, 776, 5620, 42288, 328756, 2615104, 21191904, 174303163, 1451430692, 12211799224, 103655949072, 886568153744, 7633233556276, 66105170315084, 575445692499952, 5032380942945322, 44191451788248416, 389514699013012242, 3444925385336301684
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2015

Keywords

Crossrefs

Column k=3 of A261494.

Programs

  • Maple
    with(numtheory):
    a:= n-> `if`(n=0, 1, add(binomial(4*n/d, n/d)
                 *phi(d), d=divisors(n))/(4*n)):
    seq(a(n), n=0..25);

Formula

a(n) = 1/(4*n) * Sum_{d|n} C(4*n/d,n/d) * A000010(d) for n>0, a(0) = 1.
a(n) ~ 2^(8*n-3/2) / (3^(3*n) * sqrt(3*Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 22 2015

A261498 Number of necklaces with n white beads and 4*n black beads.

Original entry on oeis.org

1, 1, 5, 31, 245, 2126, 19811, 192130, 1922741, 19692535, 205446630, 2175519380, 23322657491, 252631900236, 2760768051914, 30400169157656, 336977765092789, 3757141504436393, 42107201595510563, 474084628585822413, 5359833704140820870, 60823006052351729266
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2015

Keywords

Crossrefs

Column k=4 of A261494.

Programs

  • Maple
    with(numtheory):
    a:= n-> `if`(n=0, 1, add(binomial(5*n/d, n/d)
                 *phi(d), d=divisors(n))/(5*n)):
    seq(a(n), n=0..25);

Formula

a(n) = 1/(5*n) * Sum_{d|n} C(5*n/d,n/d) * A000010(d) for n>0, a(0) = 1.
a(n) ~ 5^(5*n-1/2) / (sqrt(Pi) * 2^(8*n+3/2) * n^(3/2)). - Vaclav Kotesovec, Aug 22 2015

A261499 Number of necklaces with n white beads and 5*n black beads.

Original entry on oeis.org

1, 1, 6, 46, 446, 4751, 54132, 642342, 7861662, 98480332, 1256569506, 16273981758, 213378976004, 2826867619109, 37782553160820, 508840821830546, 6898459216311582, 94070535317459018, 1289430373206452136, 17755914760643605782, 245518560760433583946
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2015

Keywords

Crossrefs

Column k=5 of A261494.

Programs

  • Maple
    with(numtheory):
    a:= n-> `if`(n=0, 1, add(binomial(6*n/d, n/d)
                 *phi(d), d=divisors(n))/(6*n)):
    seq(a(n), n=0..25);

Formula

a(n) = 1/(6*n) * Sum_{d|n} C(6*n/d,n/d) * A000010(d) for n>0, a(0) = 1.
a(n) ~ 6^(6*n) / (2 * sqrt(3*Pi) * 5^(5*n+1/2) * n^(3/2)). - Vaclav Kotesovec, Aug 22 2015

A261500 Number of necklaces with n white beads and 6*n black beads.

Original entry on oeis.org

1, 1, 7, 64, 735, 9276, 124936, 1753074, 25366335, 375677659, 5667212132, 86775157140, 1345153548264, 21069043965984, 332927800269694, 5301031234085664, 84967018635587775, 1369846562874360887, 22199151536133457885, 361411377745122110422, 5908312923795257331460
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2015

Keywords

Crossrefs

Column k=6 of A261494.

Programs

  • Maple
    with(numtheory):
    a:= n-> `if`(n=0, 1, add(binomial(7*n/d, n/d)
                 *phi(d), d=divisors(n))/(7*n)):
    seq(a(n), n=0..25);

Formula

a(n) = 1/(7*n) * Sum_{d|n} C(7*n/d,n/d) * A000010(d) for n>0, a(0) = 1.
a(n) ~ 7^(7*n-1/2) / (2 * sqrt(3*Pi) * 6^(6*n) * n^(3/2)). - Vaclav Kotesovec, Aug 22 2015

A261501 Number of necklaces with n white beads and 7*n black beads.

Original entry on oeis.org

1, 1, 8, 85, 1128, 16451, 255704, 4141383, 69159400, 1182125128, 20581159608, 363704640476, 6506965279992, 117626432708864, 2145180358634664, 39421026305282660, 729242353169440744, 13568988503585900648, 253785064586356459616, 4768543107831461199897
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2015

Keywords

Crossrefs

Column k=7 of A261494.

Programs

  • Maple
    with(numtheory):
    a:= n-> `if`(n=0, 1, add(binomial(8*n/d, n/d)
                 *phi(d), d=divisors(n))/(8*n)):
    seq(a(n), n=0..25);

Formula

a(n) = 1/(8*n) * Sum_{d|n} C(8*n/d,n/d) * A000010(d) for n>0, a(0) = 1.
a(n) ~ 2^(24*n-2) / (sqrt(Pi) * 7^(7*n+1/2) * n^(3/2)). - Vaclav Kotesovec, Aug 22 2015

A261495 Number of necklaces with n white beads and n^2 black beads.

Original entry on oeis.org

1, 1, 3, 19, 245, 4751, 124936, 4141383, 166237161, 7847250409, 426342182761, 26219808548110, 1801378010581175, 136784412621194274, 11378390032696241010, 1029218687419565103111, 100592759623604055645649, 10565465772302876757883823, 1186893721789951847976898669
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2015

Keywords

Crossrefs

Main diagonal of A261494.

Programs

  • Maple
    with(numtheory):
    a:= n-> `if`(n=0, 1, add(binomial((n^2+n)/d, n/d)
                 *phi(d), d=divisors(n))/(n^2+n)):
    seq(a(n), n=0..20);
  • Mathematica
    a[n_] := If[n==0, 1, DivisorSum[n, Binomial[(n^2+n)/#, n/#]*EulerPhi[#]&]/ (n^2 + n)];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 25 2017, translated from Maple *)
  • PARI
    a(n) = if(n<1, 1, sumdiv(n, d, binomial((n^2 + n)/d, n/d) * eulerphi(d)) / (n^2 + n));
    for(n=0, 20, print1(a(n),", ")) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n) = 1/((n+1)*n) * Sum_{d|n} C((n+1)*n/d,n/d) * A000010(d) for n>0, a(0) = 1.
a(n) ~ exp(n+1/2) * n^(n-5/2) / sqrt(2*Pi). - Vaclav Kotesovec, Aug 22 2015

A261496 Number of necklaces with n white beads and n^2-n black beads.

Original entry on oeis.org

1, 1, 2, 10, 116, 2126, 54132, 1753074, 69159400, 3220837534, 173103115760, 10551652603526, 719578430426044, 54297978110913252, 4492502634679508204, 404469190271900056316, 39370123445405248353744, 4120204305690280446004838, 461365717080849798202175772
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2015

Keywords

Crossrefs

Lower diagonal of A261494.
Cf. A000010.

Programs

  • Maple
    with(numtheory):
    a:= n-> `if`(n=0, 1, add(binomial(n^2/d, n/d)
                *phi(d), d=divisors(n))/n^2):
    seq(a(n), n=0..20);

Formula

a(n) = 1/(n^2) * Sum_{d|n} C(n^2/d,n/d) * A000010(d) for n>0, a(0) = 1.
a(n) ~ exp(n-1/2) * n^(n-5/2) / sqrt(2*Pi). - Vaclav Kotesovec, Aug 22 2015

A261502 Number of necklaces with n white beads and 8*n black beads.

Original entry on oeis.org

1, 1, 9, 109, 1641, 27151, 478341, 8782075, 166237161, 3220837534, 63562741159, 1273237637706, 25820645555109, 529080420540114, 10937268142896643, 227824992158991334, 4777204094770874857, 100757627271124231383, 2136117417348870713646, 45496022230420668679932
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2015

Keywords

Crossrefs

Column k=8 of A261494.

Programs

  • Maple
    with(numtheory):
    a:= n-> `if`(n=0, 1, add(binomial(9*n/d, n/d)
                 *phi(d), d=divisors(n))/(9*n)):
    seq(a(n), n=0..25);

Formula

a(n) = 1/(9*n) * Sum_{d|n} C(9*n/d,n/d) * A000010(d) for n>0, a(0) = 1.
a(n) ~ 9^(9*n-1/2) / (sqrt(2*Pi) * 8^(8*n+1/2) * n^(3/2)). - Vaclav Kotesovec, Aug 22 2015
Showing 1-10 of 12 results. Next