A003239
Number of rooted planar trees with n non-root nodes: circularly cycling the subtrees at the root gives equivalent trees.
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 80, 246, 810, 2704, 9252, 32066, 112720, 400024, 1432860, 5170604, 18784170, 68635478, 252088496, 930138522, 3446167860, 12815663844, 47820447028, 178987624514, 671825133648, 2528212128776, 9536895064400, 36054433810102, 136583761444364, 518401146543812
Offset: 0
As _David Callan_ said, a(n) is the number of n-multisets in Z mod n whose sum is 0. So for n = 4 the a(4)=10 multisets are (0, 0, 0, 0), (1, 1, 1, 1), (0, 1, 1, 2), (0, 0, 2, 2), (2, 2, 2, 2), (0, 0, 1, 3), (1, 2, 2, 3), (1, 1, 3, 3), (0, 2, 3, 3) and (3, 3, 3, 3). - _Boas Bakker_, Apr 21 2025
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 305 (see R(x)).
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973; page 80, Problem 3.13.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.112(b).
- Seiichi Manyama, Table of n, a(n) for n = 0..1669 (terms 0..200 from T. D. Noe)
- Michal Bassan, Serte Donderwinkel, and Brett Kolesnik, Graphical sequences and plane trees, arXiv:2406.05110 [math.CO], 2024.
- Bruce M. Boman, Thien-Nam Dinh, Keith Decker, Brooks Emerick, Christopher Raymond, and Gilberto Schleinger, Why do Fibonacci numbers appear in patterns of growth in nature?, Fibonacci Quarterly, 55(5) (2017), 30-41.
- R. Brualdi and M. Newman, An enumeration problem for a congruence equation, J. Res. Nat. Bureau Standards, B74 (1970), 37-40.
- CombOS - Combinatorial Object Server, Generate rooted plane trees.
- Paul Drube and Puttipong Pongtanapaisan, Annular Non-Crossing Matchings, Journal of Integer Sequences, Vol. 19 (2016), #16.2.4.
- A. Elashvili and M. Jibladze, Hermite reciprocity for the regular representations of cyclic groups, Indag. Math. (N.S.) 9(2) (1998), 233--238. MR1691428 (2000c:13006).
- A. Elashvili, M. Jibladze, and D. Pataraia, Combinatorics of necklaces and "Hermite reciprocity", J. Algebraic Combin. 10(2) (1999), 173--188. MR1719140 (2000j:05009). See p. 174. - _N. J. A. Sloane_, Aug 06 2014
- M. L. Fredman, A symmetry relationship for a class of partitions, J. Combin. Theory Ser. A, 18 (1975), 199-202. See Eq. (4), a(n) = S(n,n,0).
- F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335.
- F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335. (Annotated scanned copy)
- Thomas C. Hull and Tomohiro Tachi, Double-line rigid origami, arXiv:1709.03210 [math.MG], 2017.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 761.
- Benjamin Ruoyu Kan, Polynomial Approximations for Quantum Hamiltonian Complexity, Bachelor's thesis, Harvard Univ., 2023.
- G. Labelle and P. Leroux, Enumeration of (uni- or bicolored) plane trees according to their degree distribution, Disc. Math. 157 (1996), 227-240, Eq. (1.18).
- J. Malenfant, On the Matrix-Element Expansion of a Circulant Determinant, arXiv preprint arXiv:1502.06012 [math.NT], 2015.
- Paul Melotti, Sanjay Ramassamy, and Paul Thévenin, Points and lines configurations for perpendicular bisectors of convex cyclic polygons, arXiv:2003.11006 [math.CO], 2020.
- J. Sawada, Generating rooted and free plane trees, ACM Transactions on Algorithms, 2(1) (2006), 1-13.
- Hugh Thomas, The number of terms in the permanent and the determinant of a generic circulant matrix, arXiv:math/0301048 [math.CO], 2003.
- D. W. Walkup, The number of plane trees, Mathematika, 19(2) (1972), 200-204. - From _N. J. A. Sloane_, Jun 08 2012
- Index entries for sequences related to necklaces
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
-
with(numtheory): A003239 := proc(n) local t1,t2,d; t2 := divisors(n); t1 := 0; for d in t2 do t1 := t1+phi(n/d)*binomial(2*d,d)/(2*n); od; t1; end;
spec := [ C, {B=Union(Z,Prod(B,B)), C=Cycle(B)}, unlabeled ]; [seq(combstruct[count](spec, size=n), n=0..40)];
-
a[n_] := Sum[ EulerPhi[n/k]*Binomial[2k, k]/(2n), {k, Divisors[n]}]; a[0] = 1; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 11 2012 *)
-
C(n, k)=binomial(n,k);
a(n) = if(n<=0, n==0, sumdiv(n, d, eulerphi(n/d) * C(2*d, d)) / (2*n) );
/* or, second formula: */
/* a(n) = if(n<=0, n==0, sumdiv(n, d, eulerphi(n/d) * C(2*d-1,d)) / n ); */
/* Joerg Arndt, Oct 21 2012 */
-
def A003239(n):
if n == 0: return 1
return sum(euler_phi(n/d)*binomial(2*d, d)/(2*n) for d in divisors(n))
print([A003239(n) for n in (0..29)]) # Peter Luschny, Dec 10 2020
Sequence corrected and extended by Roderick J. Fletcher (yylee(AT)mail.ncku.edu.tw), Aug 1997
A082936
a(n) = (1/(3*n))*Sum_{d|n, d even} phi(2*n/d)*binomial(3d/2,d).
Original entry on oeis.org
1, 1, 3, 10, 43, 201, 1038, 5538, 30667, 173593, 1001603, 5864750, 34769374, 208267320, 1258579654, 7663720710, 46976034379, 289628805623, 1794932468571, 11175157356522, 69864075597643, 438403736549145, 2760351032959050, 17433869214973754, 110420300879752990
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- M. Bousquet and C. Lamathe, Enumeration of solid trees according to edge number and edge degree distribution, Discr. Math., 298 (2005), 115-141.
- M. Isachenkov, I. Kirsch, V. Schomerus, Chiral Primaries in Strange Metals, arXiv preprint arXiv:1403.6857 [hep-th], 2014.
-
with(numtheory): f := proc(n) local t1,d; t1 := 0; for d from 1 to n do if n mod d = 0 then if d mod 2 = 0 then t1 := t1+phi(n/d)*binomial(3*d/2,d) fi; fi; od; 2*t1/(3*n); end; # use with n even
-
a[n_] := DivisorSum[n, EulerPhi[n/#]*Binomial[3#, #]&]/(3n); a[0] = 1; Array[a, 30, 0] (* Jean-François Alcover, Dec 02 2015 *)
-
C(n, k)=binomial(n,k);
a(n) = if(n<=0, n==0, sumdiv(n, d, eulerphi(n/d) * C(3*d,d)) / (3*n) );
/* or, second formula: */
/* a(n) = if(n<=0, n==0, sumdiv(n, d, eulerphi(n/d) * C(3*d-1,d)) / (2*n) ); */
/* Joerg Arndt, Oct 21 2012 */
A261497
Number of necklaces with n white beads and 3*n black beads.
Original entry on oeis.org
1, 1, 4, 19, 116, 776, 5620, 42288, 328756, 2615104, 21191904, 174303163, 1451430692, 12211799224, 103655949072, 886568153744, 7633233556276, 66105170315084, 575445692499952, 5032380942945322, 44191451788248416, 389514699013012242, 3444925385336301684
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Eric Weisstein's World of Mathematics, Necklace
- Wikipedia, Necklace (combinatorics)
- Index entries for sequences related to necklaces
-
with(numtheory):
a:= n-> `if`(n=0, 1, add(binomial(4*n/d, n/d)
*phi(d), d=divisors(n))/(4*n)):
seq(a(n), n=0..25);
A261498
Number of necklaces with n white beads and 4*n black beads.
Original entry on oeis.org
1, 1, 5, 31, 245, 2126, 19811, 192130, 1922741, 19692535, 205446630, 2175519380, 23322657491, 252631900236, 2760768051914, 30400169157656, 336977765092789, 3757141504436393, 42107201595510563, 474084628585822413, 5359833704140820870, 60823006052351729266
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..920
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Eric Weisstein's World of Mathematics, Necklace
- Wikipedia, Necklace (combinatorics)
- Index entries for sequences related to necklaces
-
with(numtheory):
a:= n-> `if`(n=0, 1, add(binomial(5*n/d, n/d)
*phi(d), d=divisors(n))/(5*n)):
seq(a(n), n=0..25);
A261499
Number of necklaces with n white beads and 5*n black beads.
Original entry on oeis.org
1, 1, 6, 46, 446, 4751, 54132, 642342, 7861662, 98480332, 1256569506, 16273981758, 213378976004, 2826867619109, 37782553160820, 508840821830546, 6898459216311582, 94070535317459018, 1289430373206452136, 17755914760643605782, 245518560760433583946
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..850
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Eric Weisstein's World of Mathematics, Necklace
- Wikipedia, Necklace (combinatorics)
- Index entries for sequences related to necklaces
-
with(numtheory):
a:= n-> `if`(n=0, 1, add(binomial(6*n/d, n/d)
*phi(d), d=divisors(n))/(6*n)):
seq(a(n), n=0..25);
A261500
Number of necklaces with n white beads and 6*n black beads.
Original entry on oeis.org
1, 1, 7, 64, 735, 9276, 124936, 1753074, 25366335, 375677659, 5667212132, 86775157140, 1345153548264, 21069043965984, 332927800269694, 5301031234085664, 84967018635587775, 1369846562874360887, 22199151536133457885, 361411377745122110422, 5908312923795257331460
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..800
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Eric Weisstein's World of Mathematics, Necklace
- Wikipedia, Necklace (combinatorics)
- Index entries for sequences related to necklaces
-
with(numtheory):
a:= n-> `if`(n=0, 1, add(binomial(7*n/d, n/d)
*phi(d), d=divisors(n))/(7*n)):
seq(a(n), n=0..25);
A261501
Number of necklaces with n white beads and 7*n black beads.
Original entry on oeis.org
1, 1, 8, 85, 1128, 16451, 255704, 4141383, 69159400, 1182125128, 20581159608, 363704640476, 6506965279992, 117626432708864, 2145180358634664, 39421026305282660, 729242353169440744, 13568988503585900648, 253785064586356459616, 4768543107831461199897
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..760
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Eric Weisstein's World of Mathematics, Necklace
- Wikipedia, Necklace (combinatorics)
- Index entries for sequences related to necklaces
-
with(numtheory):
a:= n-> `if`(n=0, 1, add(binomial(8*n/d, n/d)
*phi(d), d=divisors(n))/(8*n)):
seq(a(n), n=0..25);
A261495
Number of necklaces with n white beads and n^2 black beads.
Original entry on oeis.org
1, 1, 3, 19, 245, 4751, 124936, 4141383, 166237161, 7847250409, 426342182761, 26219808548110, 1801378010581175, 136784412621194274, 11378390032696241010, 1029218687419565103111, 100592759623604055645649, 10565465772302876757883823, 1186893721789951847976898669
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..335
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Eric Weisstein's World of Mathematics, Necklace
- Wikipedia, Necklace (combinatorics)
- Index entries for sequences related to necklaces
-
with(numtheory):
a:= n-> `if`(n=0, 1, add(binomial((n^2+n)/d, n/d)
*phi(d), d=divisors(n))/(n^2+n)):
seq(a(n), n=0..20);
-
a[n_] := If[n==0, 1, DivisorSum[n, Binomial[(n^2+n)/#, n/#]*EulerPhi[#]&]/ (n^2 + n)];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 25 2017, translated from Maple *)
-
a(n) = if(n<1, 1, sumdiv(n, d, binomial((n^2 + n)/d, n/d) * eulerphi(d)) / (n^2 + n));
for(n=0, 20, print1(a(n),", ")) \\ Indranil Ghosh, Mar 25 2017
A261496
Number of necklaces with n white beads and n^2-n black beads.
Original entry on oeis.org
1, 1, 2, 10, 116, 2126, 54132, 1753074, 69159400, 3220837534, 173103115760, 10551652603526, 719578430426044, 54297978110913252, 4492502634679508204, 404469190271900056316, 39370123445405248353744, 4120204305690280446004838, 461365717080849798202175772
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..335
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Eric Weisstein's World of Mathematics, Necklace
- Wikipedia, Necklace (combinatorics)
- Index entries for sequences related to necklaces
-
with(numtheory):
a:= n-> `if`(n=0, 1, add(binomial(n^2/d, n/d)
*phi(d), d=divisors(n))/n^2):
seq(a(n), n=0..20);
A261502
Number of necklaces with n white beads and 8*n black beads.
Original entry on oeis.org
1, 1, 9, 109, 1641, 27151, 478341, 8782075, 166237161, 3220837534, 63562741159, 1273237637706, 25820645555109, 529080420540114, 10937268142896643, 227824992158991334, 4777204094770874857, 100757627271124231383, 2136117417348870713646, 45496022230420668679932
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..730
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Eric Weisstein's World of Mathematics, Necklace
- Wikipedia, Necklace (combinatorics)
- Index entries for sequences related to necklaces
-
with(numtheory):
a:= n-> `if`(n=0, 1, add(binomial(9*n/d, n/d)
*phi(d), d=divisors(n))/(9*n)):
seq(a(n), n=0..25);
Showing 1-10 of 12 results.
Comments