cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A261494 Number A(n,k) of necklaces with n white beads and k*n black beads; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 10, 10, 1, 1, 1, 5, 19, 43, 26, 1, 1, 1, 6, 31, 116, 201, 80, 1, 1, 1, 7, 46, 245, 776, 1038, 246, 1, 1, 1, 8, 64, 446, 2126, 5620, 5538, 810, 1, 1, 1, 9, 85, 735, 4751, 19811, 42288, 30667, 2704, 1
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2015

Keywords

Comments

For k>=1 is column k asymptotic to (k+1)^((k+1)*n-1/2) / (sqrt(2*Pi) * k^(k*n+1/2) * n^(3/2)). - Vaclav Kotesovec, Aug 22 2015

Examples

			A(2,2) = 3: 000011, 000101, 001001.
A(3,2) = 10: 000000111, 000001011, 000010011, 000100011, 001000011, 010000011, 000010101, 000100101, 001000101, 001001001.
Square array A(n,k) begins:
  1,  1,    1,    1,     1,     1,      1, ...
  1,  1,    1,    1,     1,     1,      1, ...
  1,  2,    3,    4,     5,     6,      7, ...
  1,  4,   10,   19,    31,    46,     64, ...
  1, 10,   43,  116,   245,   446,    735, ...
  1, 26,  201,  776,  2126,  4751,   9276, ...
  1, 80, 1038, 5620, 19811, 54132, 124936, ...
		

Crossrefs

Main diagonal gives A261495.
Lower diagonal gives A261496.
Cf. A000010.

Programs

  • Maple
    with(numtheory):
    A:= (n, k)-> `if`(n=0, 1, add(binomial((k+1)*n/d, n/d)
                        *phi(d), d=divisors(n))/((k+1)*n)):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    A[n_, k_] := If[n==0, 1, DivisorSum[n, Binomial[(k+1)*n/#, n/#]*EulerPhi[#] /((k+1)*n)&]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)
  • PARI
    a(n,k) = if(n<1, 1, sumdiv(n, d, binomial((k + 1)*n/d, n/d) * eulerphi(d)) / ((k + 1)*n));
    for(d=0, 14, for(n=0, d, print1(a(n, d - n),", ");); print();) \\ Indranil Ghosh, Mar 25 2017

Formula

A(n,k) = 1/((k+1)*n) * Sum_{d|n} C((k+1)*n/d,n/d) * A000010(d) for n>0, A(0,k) = 1.
A(n,k) = 1/((k+1)*n)*Sum_{i=1..n} C((k+1)*gcd(n,i),gcd(n,i)) = 1/((k+1)*n)*Sum_{i=1..n} C((k+1)*n/gcd(n,i),n/gcd(n,i))*phi(gcd(n,i))/phi(n/gcd(n,i)) for n >= 1, where phi = A000010. - Richard L. Ollerton, May 19 2021

A346579 a(n) = (1/(5*n)) * Sum_{d|n} mu(n/d) * binomial(5*d,d).

Original entry on oeis.org

1, 4, 30, 240, 2125, 19776, 192129, 1922496, 19692504, 205444500, 2175519379, 23322637440, 252631900235, 2760767859780, 30400169155500, 336977763170048, 3757141504436392, 42107201575798248, 474084628585822412, 5359833703935374000, 60823006052351537106, 692556314455384443196
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 24 2021

Keywords

Comments

Inverse Euler transform of A002294.
Moebius transform of A261498.

Crossrefs

Programs

  • Mathematica
    Table[(1/(5 n)) Sum[MoebiusMu[n/d] Binomial[5 d, d], {d, Divisors[n]}], {n, 22}]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*binomial(5*d,d))/(5*n); \\ Michel Marcus, Jul 24 2021
Showing 1-2 of 2 results.