A261516 Number of perfect rhythmic tilings of [0,3n-1] with triples.
1, 1, 0, 0, 0, 2, 0, 18, 66, 382, 1104, 4138, 15324, 61644, 325456, 2320948, 17660110, 148271962, 1171109228, 9257051746
Offset: 0
Examples
For n=1, there is 1 such tiling: (0,1,2). For n=5, there are 2 such tilings: (2,3,4), (8,10,12), (5,9,13), (1,6,11), (0,7,14) and its mirror, that have these distinct common differences: 1,2,4,5,7.
References
- J. P. Delahaye, La musique mathématique de Tom Johnson, in Mathématiques pour le plaisir, Belin-Pour la Science, Paris, 2010.
Links
- J. P. Delahaye, La musique mathématique de Tom Johnson, Pour la Science, 325, Nov 2004, pp. 88-93.
- Tom Johnson, Perfect Rhythmic Tilings, Lecture delivered at MaMuX meeting, IRCAM, January 24, 2004.
- Tom Johnson, Tiling in My music, August, 2008.
Extensions
a(16)-a(17) from Alois P. Heinz, Sep 16 2015
a(18)-a(19) from Fausto A. C. Cariboni, Mar 27 2017
a(0)=1 prepended by Seiichi Manyama, Feb 21 2020
Comments