A261577
Numbers m such that (4^m + 11) / 3 is prime.
Original entry on oeis.org
1, 4, 10, 34, 40, 106, 418, 682, 12702, 30484, 182026, 217720, 241306
Offset: 1
4 is in the sequence because (4^4+11)/3 = 89 is prime.
10 is in the sequence because (4^10+11)/3 = 349529 is prime.
Cf. similar sequences listed in
A261539.
-
[n: n in [0..1500] | IsPrime((4^n+11) div 3)];
-
Select[Range[0, 5000], PrimeQ[(4^# + 11)/3] &]
-
is(n)=isprime((4^n + 11) / 3) \\ Anders Hellström, Aug 31 2015
A261578
Numbers m such that (4^m + 17) / 3 is prime.
Original entry on oeis.org
1, 2, 5, 8, 11, 23, 26, 59, 83, 89, 116, 1103, 1568, 5768, 13376, 17810, 18614, 66209, 167933, 188318
Offset: 1
2 is in the sequence because (4^2+17)/3 = 11 is prime.
5 is in the sequence because (4^5+17)/3 = 347 is prime.
Cf. similar sequences listed in
A261539.
-
[n: n in [0..1000] | IsPrime((4^n+17) div 3)];
-
Select[Range[0, 5000], PrimeQ[(4^# + 17)/3] &]
-
for(n=1, 1e3, if(isprime((4^n+17)/3), print1(n", "))) \\ Altug Alkan, Sep 14 2015
A261579
Numbers m such that (4^m + 23) / 3 is prime.
Original entry on oeis.org
2, 3, 5, 6, 27, 47, 66, 77, 83, 105, 197, 231, 293, 702, 1692, 3021, 6270, 6897, 7733, 14537, 15797, 21083, 21276, 28817, 65430, 111231, 137405, 141017, 185225
Offset: 1
2 is in the sequence because (4^2 + 23)/3 = 13 is prime.
3 is in the sequence because (4^3 + 23)/3 = 29 is prime.
Cf. similar sequences listed in
A261539.
-
[n: n in [0..1500] | IsPrime((4^n+23) div 3)];
-
Select[Range[0, 5000], PrimeQ[(4^# + 23)/3] &]
A273009
Numbers k such that (2^k + 5) / 3 is prime.
Original entry on oeis.org
0, 2, 4, 6, 12, 18, 24, 42, 84, 300, 390, 780, 822, 2430, 5508, 5514, 6492, 12372, 22680, 25770, 169416, 174240, 383544, 1007838, 1572882
Offset: 1
-
[n: n in [0..2000] | (2^n+5) mod 3 eq 0 and IsPrime((2^n+5) div 3)];
-
Select[Range[0,10000], PrimeQ[(2^# + 5)/3] &]
-
is(n)=ispseudoprime((2^n+5)/3) \\ Charles R Greathouse IV, Jun 07 2016
Showing 1-4 of 4 results.
Comments