A261546 Numbers k such that the five numbers k^2+1, (k+1)^2+1, ..., (k+4)^2+1 are all semiprime.
48, 58, 1688, 2948, 28338, 36998, 38648, 96248, 100308, 133458, 136798, 187538, 207088, 224508, 253808, 309738, 375348, 545048, 598348, 607688, 659548, 672398, 793958, 1055648, 1055688, 1140008, 1270408, 1317808, 1388398, 1399098, 1529488, 1597008, 1655338
Offset: 1
Examples
48 is in the sequence because of these five semiprimes: 48^2+1 = 2305 = 5*461; 49^2+1 = 2402 = 2*1201; 50^2+1 = 2501 = 41*61; 51^2+1 = 2602 = 2*1301; 52^2+1 = 2705 = 5*541.
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 1..15016
Programs
-
Magma
IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [1..3*10^5] | IsSemiprime(n^2+1) and IsSemiprime(n^2+2*n+2)and IsSemiprime(n^2+4*n+5)and IsSemiprime(n^2+6*n+10)and IsSemiprime(n^2+8*n+17)]; // Vincenzo Librandi, Aug 24 2015
-
Maple
with(numtheory): n:=5: for k from 1 to 10^6 do: jj:=0: for m from 0 to n-1 do: x:=(k+m)^2+1:d0:=bigomega(x): if d0=2 then jj:=jj+1: else fi: od: if jj=n then printf(`%d, `,k): else fi: od:
-
Mathematica
PrimeFactorExponentsAdded[n_]:=Plus@@Flatten[Table[#[[2]], {1}]&/@FactorInteger[n]]; Select[Range[2 10^5], PrimeFactorExponentsAdded[#^2+1] == PrimeFactorExponentsAdded[#^2 + 2 # + 2]== PrimeFactorExponentsAdded[#^2 + 4 # + 5]== PrimeFactorExponentsAdded[#^2 + 6 # + 10]== PrimeFactorExponentsAdded[#^2 + 8 # + 17] == 2 &] (* Vincenzo Librandi, Aug 24 2015 *)
-
PARI
has(n) = bigomega(n^2+1)==2; isok(n) = has(n) && has(n+1) && has(n+2) && has(n+3) && has(n+4); \\ Michel Marcus, Aug 24 2015
-
PARI
a261546() = { nterm = 0; for (i = 0, 10^9, if (isprime(20*i*i + 32*i + 13) && isprime(50*i*i + 90*i + 41) && isprime(50*i*i + 110*i + 61) && isprime(20*i*i + 48*i + 29) && bigomega(100*i*i + 200*i + 101) == 2, nterm += 1; print(nterm, " ", 10 * i + 8); ); ); } \\ - Hiroaki Yamanouchi, Oct 03 2015
-
PARI
issemi(n)=forprime(p=2,97, if(n%p==0, return(isprime(n/p)))); bigomega(n)==2 list(lim)=my(v=List()); forstep(k=48,lim,[10,30,10], if(issemi(k^2+1) && issemi((k+1)^2+1) && issemi((k+3)^2+1) && issemi((k+4)^2+1) && issemi((k+2)^2+1), listput(v,k))); Vec(v) \\ Charles R Greathouse IV, Jul 06 2017
Extensions
a(18)-a(33) from Hiroaki Yamanouchi, Oct 03 2015
Comments