cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261546 Numbers k such that the five numbers k^2+1, (k+1)^2+1, ..., (k+4)^2+1 are all semiprime.

Original entry on oeis.org

48, 58, 1688, 2948, 28338, 36998, 38648, 96248, 100308, 133458, 136798, 187538, 207088, 224508, 253808, 309738, 375348, 545048, 598348, 607688, 659548, 672398, 793958, 1055648, 1055688, 1140008, 1270408, 1317808, 1388398, 1399098, 1529488, 1597008, 1655338
Offset: 1

Views

Author

Michel Lagneau, Aug 24 2015

Keywords

Comments

a(n) == 8 (mod 10).
a(15017) > 10^10. - Hiroaki Yamanouchi, Oct 03 2015

Examples

			48 is in the sequence because of these five semiprimes:
48^2+1 = 2305 = 5*461;
49^2+1 = 2402 = 2*1201;
50^2+1 = 2501 = 41*61;
51^2+1 = 2602 = 2*1301;
52^2+1 = 2705 = 5*541.
		

Crossrefs

Subsequence of A085722.

Programs

  • Magma
    IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [1..3*10^5] | IsSemiprime(n^2+1) and IsSemiprime(n^2+2*n+2)and IsSemiprime(n^2+4*n+5)and IsSemiprime(n^2+6*n+10)and IsSemiprime(n^2+8*n+17)]; // Vincenzo Librandi, Aug 24 2015
  • Maple
    with(numtheory):
      n:=5:
      for k from 1 to 10^6 do:
        jj:=0:
        for m from 0 to n-1 do:
           x:=(k+m)^2+1:d0:=bigomega(x):
           if d0=2
           then
           jj:=jj+1:
           else
           fi:
         od:
            if jj=n
            then
            printf(`%d, `,k):
            else
            fi:
        od:
  • Mathematica
    PrimeFactorExponentsAdded[n_]:=Plus@@Flatten[Table[#[[2]], {1}]&/@FactorInteger[n]]; Select[Range[2 10^5], PrimeFactorExponentsAdded[#^2+1] == PrimeFactorExponentsAdded[#^2 + 2 # + 2]== PrimeFactorExponentsAdded[#^2 + 4 # + 5]== PrimeFactorExponentsAdded[#^2 + 6 # + 10]== PrimeFactorExponentsAdded[#^2 + 8 # + 17] == 2 &] (* Vincenzo Librandi, Aug 24 2015 *)
  • PARI
    has(n) = bigomega(n^2+1)==2;
    isok(n) = has(n) && has(n+1) && has(n+2) && has(n+3) && has(n+4); \\ Michel Marcus, Aug 24 2015
    
  • PARI
    a261546() = {
      nterm = 0;
      for (i = 0, 10^9,
        if (isprime(20*i*i + 32*i + 13) &&
          isprime(50*i*i + 90*i + 41) &&
          isprime(50*i*i + 110*i + 61) &&
          isprime(20*i*i + 48*i + 29) &&
          bigomega(100*i*i + 200*i + 101) == 2,
          nterm += 1;
          print(nterm, " ", 10 * i + 8);
        );
      );
    } \\ - Hiroaki Yamanouchi, Oct 03 2015
    
  • PARI
    issemi(n)=forprime(p=2,97, if(n%p==0, return(isprime(n/p)))); bigomega(n)==2
    list(lim)=my(v=List()); forstep(k=48,lim,[10,30,10], if(issemi(k^2+1) && issemi((k+1)^2+1) && issemi((k+3)^2+1) && issemi((k+4)^2+1) && issemi((k+2)^2+1), listput(v,k))); Vec(v) \\ Charles R Greathouse IV, Jul 06 2017
    

Extensions

a(18)-a(33) from Hiroaki Yamanouchi, Oct 03 2015