A261721 Fourth-dimensional figurate numbers.
1, 1, 5, 1, 6, 15, 1, 7, 20, 35, 1, 8, 25, 50, 70, 1, 9, 30, 65, 105, 126, 1, 10, 35, 80, 140, 196, 210, 1, 11, 40, 95, 175, 266, 336, 330, 1, 12, 45, 110, 210, 336, 462, 540, 495, 1, 13, 50, 125, 245, 406, 588, 750, 825, 715, 1, 14, 55, 140, 280, 476, 714, 960, 1155, 1210, 1001, 1
Offset: 1
Examples
The array as shown in A257200: 1, 5, 15, 35, 70, 126, 210, 330, ... A000332 1, 6, 20, 50, 105, 196, 336, 540, ... A002415 1, 7, 25, 65, 140, 266, 462, 750, ... A001296 1, 8, 30, 80, 175, 336, 588, 960, ... A002417 1, 9, 35, 95, 210, 406, 714, 1170, ... A002418 1, 10, 40, 110, 245, 476, 840, 1380, ... A002419 ... (1, 7, 25, 65, 140, ...) is the third row of the array and is the binomial transform of the fourth row of Pascal's triangle (1,3) followed by zeros: (1, 6, 12, 10, 3, 0, 0, 0, ...); and the fourth partial sum of (1, 3, 3, 3, 0, 0, 0). (1, 7, 25, 65, 140, ...) is the third row of the array and is the binomial transform of: (2 * (0, 1, 3, 3, 1, 0, 0, 0, ...) + (1, 4, 6, 4, 1, 0, 0, 0, ...)); that is, the binomial transform of (1, 6, 12, 10, 3, 0, 0, 0, ...). Row 2 of the array is (1, 5, 15, 35, 70, ...) + (0, 1, 5, 15, 35, ...), = (1, 6, 20, 50, 105, ...).
References
- Albert H. Beiler, "Recreations in the Theory of Numbers"; Dover, 1966, p. 195 (Table 80).
Links
Crossrefs
Programs
-
Maple
A:= (n, k)-> binomial(k+3, 3) + n*binomial(k+3, 4): seq(seq(A(d-k, k), k=0..d-1), d=1..13); # Alois P. Heinz, Aug 31 2015
-
Mathematica
row[1] = LinearRecurrence[{5, -10, 10, -5, 1}, {1, 5, 15, 35, 70}, m = 10]; row1 = Join[{0}, row[1] // Most]; row[n_] := row[n] = row[n-1] + row1; Table[row[n-k+1][[k]], {n, 1, m}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 26 2016 *)
-
PARI
A(n, k) = binomial(k+3, 3) + n*binomial(k+3, 4) table(n, k) = for(x=1, n, for(y=0, k-1, print1(A(x, y), ", ")); print("")) /* Print initial 6 rows and 8 columns as follows: */ table(6, 8) \\ Felix Fröhlich, Jul 28 2016
Formula
G.f. for row n: (1 + (n-1)*x)/(1 - x)^5.
A(n,k) = C(k+3,3) + n * C(k+3,4) = A080852(n,k).
E.g.f. as array: exp(y)*(exp(x)*(24 + 24*(3 + x)*y + 36*(1 + x)*y^2 + 4*(1 + 3*x)*y^3 + x*y^4) - 4*(6 + 18*y + 9*y^2 + y^3))/24. - Stefano Spezia, Aug 15 2024
Comments