cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A032020 Number of compositions (ordered partitions) of n into distinct parts.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 11, 13, 19, 27, 57, 65, 101, 133, 193, 351, 435, 617, 851, 1177, 1555, 2751, 3297, 4757, 6293, 8761, 11305, 15603, 24315, 30461, 41867, 55741, 74875, 98043, 130809, 168425, 257405, 315973, 431065, 558327, 751491, 958265, 1277867, 1621273
Offset: 0

Views

Author

Christian G. Bower, Apr 01 1998

Keywords

Comments

Compositions into distinct parts are equivalent to (1,1)-avoiding compositions. - Gus Wiseman, Jun 25 2020
All terms are odd. - Alois P. Heinz, Apr 09 2021

Examples

			a(6) = 11 because 6 = 5+1 = 4+2 = 3+2+1 = 3+1+2 = 2+4 = 2+3+1 = 2+1+3 = 1+5 = 1+3+2 = 1+2+3.
From _Gus Wiseman_, Jun 25 2020: (Start)
The a(0) = 1 through a(7) = 13 strict compositions:
  ()  (1)  (2)  (3)    (4)    (5)    (6)      (7)
                (1,2)  (1,3)  (1,4)  (1,5)    (1,6)
                (2,1)  (3,1)  (2,3)  (2,4)    (2,5)
                              (3,2)  (4,2)    (3,4)
                              (4,1)  (5,1)    (4,3)
                                     (1,2,3)  (5,2)
                                     (1,3,2)  (6,1)
                                     (2,1,3)  (1,2,4)
                                     (2,3,1)  (1,4,2)
                                     (3,1,2)  (2,1,4)
                                     (3,2,1)  (2,4,1)
                                              (4,1,2)
                                              (4,2,1)
(End)
		

References

  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17.

Crossrefs

Row sums of A241719.
Main diagonal of A261960.
Dominated by A003242 (anti-run compositions).
These compositions are ranked by A233564.
(1,1)-avoiding patterns are counted by A000142.
Numbers with strict prime signature are A130091.
(1,1,1)-avoiding compositions are counted by A232432.
(1,1)-matching compositions are counted by A261982.
Inseparable partitions are counted by A325535.
Patterns matched by compositions are counted by A335456.
Strict permutations of prime indices are counted by A335489.

Programs

  • Maple
    b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)
          -> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0))) end:
    a:= proc(n) local l; l:=b(n, n): add((i-1)! *l[i], i=1..nops(l)) end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Dec 12 2012
    # second Maple program:
    T:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
          `if`(k=0, `if`(n=0, 1, 0), T(n-k, k) +k*T(n-k, k-1)))
        end:
    a:= n-> add(T(n, k), k=0..floor((sqrt(8*n+1)-1)/2)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Sep 04 2015
  • Mathematica
    f[list_]:=Length[list]!; Table[Total[Map[f, Select[IntegerPartitions[n], Sort[#] == Union[#] &]]], {n, 0,30}]
    T[n_, k_] := T[n, k] = If[k<0 || n<0, 0, If[k==0, If[n==0, 1, 0], T[n-k, k] + k*T[n-k, k-1]]]; a[n_] := Sum[T[n, k], {k, 0, Floor[(Sqrt[8*n + 1] - 1) / 2]}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Sep 22 2015, after Alois P. Heinz *)
  • PARI
    N=66;  q='q+O('q^N);
    gf=sum(n=0,N, n!*q^(n*(n+1)/2) / prod(k=1,n, 1-q^k ) );
    Vec(gf)
    /* Joerg Arndt, Oct 20 2012 */
    
  • PARI
    Q(N) = { \\ A008289
      my(q = vector(N)); q[1] = [1, 0, 0, 0];
      for (n = 2, N,
        my(m = (sqrtint(8*n+1) - 1)\2);
        q[n] = vector((1 + (m>>2)) << 2); q[n][1] = 1;
        for (k = 2, m, q[n][k] = q[n-k][k] + q[n-k][k-1]));
      return(q);
    };
    seq(N) = concat(1, apply(q -> sum(k = 1, #q, q[k] * k!), Q(N)));
    seq(43) \\ Gheorghe Coserea, Sep 09 2018

Formula

"AGK" (ordered, elements, unlabeled) transform of 1, 1, 1, 1, ...
G.f.: Sum_{k>=0} k! * x^((k^2+k)/2) / Product_{j=1..k} (1-x^j). - David W. Wilson May 04 2000
a(n) = Sum_{m=1..n} A008289(n,m)*m!. - Geoffrey Critzer, Sep 07 2012

A261836 Number T(n,k) of compositions of n into distinct parts where each part i is marked with a word of length i over a k-ary alphabet whose letters appear in alphabetical order and all k letters occur at least once in the composition; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 10, 7, 0, 3, 15, 21, 9, 0, 5, 40, 96, 92, 31, 0, 11, 183, 832, 1562, 1305, 403, 0, 13, 266, 1539, 3908, 4955, 3090, 757, 0, 19, 549, 4281, 14791, 26765, 26523, 13671, 2873, 0, 27, 1056, 10902, 50208, 124450, 178456, 148638, 66904, 12607
Offset: 0

Views

Author

Alois P. Heinz, Sep 02 2015

Keywords

Comments

Also number of matrices with k rows of nonnegative integer entries and without zero rows or columns such that the sum of all entries is equal to n and the column sums are distinct.

Examples

			T(3,2) = 10: (matrices and corresponding marked compositions are given)
  [2]   [1]   [2 0]  [0 2]  [1 0]  [0 1]  [1 1]  [1 1]  [1 0]  [0 1]
  [1]   [2]   [0 1]  [1 0]  [0 2]  [2 0]  [1 0]  [0 1]  [1 1]  [1 1]
  3aab, 3abb, 2aa1b, 1b2aa, 1a2bb, 2bb1a, 2ab1a, 1a2ab, 2ab1b, 1b2ab.
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  1,   1;
  0,  3,  10,    7;
  0,  3,  15,   21,     9;
  0,  5,  40,   96,    92,    31;
  0, 11, 183,  832,  1562,  1305,   403;
  0, 13, 266, 1539,  3908,  4955,  3090,   757;
  0, 19, 549, 4281, 14791, 26765, 26523, 13671, 2873;
		

Crossrefs

Columns k=0-10 give: A000007, A032020 (for n>0), A261853, A261854, A261855, A261856, A261857, A261858, A261859, A261860, A261861.
Main diagonal gives A032011.
Row sums give A261838.
T(2n,n) gives A261828.

Programs

  • Maple
    b:= proc(n, i, p, k) option remember;
          `if`(i*(i+1)/2n, 0, b(n-i, i-1, p+1, k)*binomial(i+k-1, k-1))))
        end:
    T:= (n, k)-> add(b(n$2, 0, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[n_, i_, p_, k_] := b[n, i, p, k] = If[i*(i+1)/2n, 0, b[n-i, i-1, p+1, k]*Binomial[i+k-1, k-1]]]]; T[n_, k_] := Sum[b[n, n, 0, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[ Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 21 2016, after Alois P. Heinz *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A261835(n,k-i).

A261837 Number of compositions of n into distinct parts where each part i is marked with a word of length i over an n-ary alphabet whose letters appear in alphabetical order.

Original entry on oeis.org

1, 1, 3, 46, 195, 1876, 51114, 322764, 3644355, 43916950, 2427338628, 18277511616, 272107762602, 3507931293608, 62485721142820, 5810222040368296, 53025343448015811, 913540133071336044, 13871534219465464002, 253750203721349071650, 5307815745011707670820
Offset: 0

Views

Author

Alois P. Heinz, Sep 02 2015

Keywords

Crossrefs

Main diagonal of A261835.

Programs

  • Maple
    b:= proc(n, i, p, k) option remember;
          `if`(i*(i+1)/2n, 0, b(n-i, i-1, p+1, k)*binomial(i+k-1, k-1))))
        end:
    a:= n-> b(n$2, 0, n):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_, p_, k_] := b[n, i, p, k] =
         If[i (i + 1)/2 < n, 0, If[n == 0, p!, b[n, i - 1, p, k] +
         If[i > n, 0, b[n - i, i - 1, p + 1, k]*Binomial[i + k - 1, k - 1]]]];
    a[n_] := b[n, n, 0, n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 12 2021, after Alois P. Heinz *)

Formula

a(n) = A261835(n,n).

A261840 Number of compositions of n into distinct parts where each part i is marked with a word of length i over a binary alphabet whose letters appear in alphabetical order.

Original entry on oeis.org

1, 2, 3, 16, 21, 50, 205, 292, 587, 1110, 4535, 5980, 12447, 20910, 40195, 142520, 196291, 372042, 635081, 1128872, 1873245, 6537466, 8553639, 16333532, 26470861, 46629886, 73222631, 127947300, 385293581, 518212198, 939401193, 1516760160, 2564361235
Offset: 0

Views

Author

Alois P. Heinz, Sep 03 2015

Keywords

Comments

Also matrices with two rows of nonnegative integers with distinct positive column sums and total element sum n.

Crossrefs

Column k=2 of A261835.

Programs

  • Maple
    b:= proc(n, i, p) option remember;
          `if`(i*(i+1)/2n, 0, b(n-i, i-1, p+1)*(i+1))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..40);

A261841 Number of compositions of n into distinct parts where each part i is marked with a word of length i over a ternary alphabet whose letters appear in alphabetical order.

Original entry on oeis.org

1, 3, 6, 46, 75, 231, 1414, 2376, 5985, 14151, 89454, 135330, 343677, 697017, 1657212, 9439826, 14381055, 33119667, 66361286, 141451860, 283907499, 1642516411, 2346737106, 5367877296, 10093521943, 20923900623, 38428831710, 80538197724, 416229711735
Offset: 0

Views

Author

Alois P. Heinz, Sep 03 2015

Keywords

Comments

Also matrices with three rows of nonnegative integers with distinct positive column sums and total element sum n.

Crossrefs

Column k=3 of A261835.

Programs

  • Maple
    b:= proc(n, i, p) option remember;
          `if`(i*(i+1)/2n, 0, b(n-i, i-1, p+1)*binomial(i+2, 2))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..40);

A261842 Number of compositions of n into distinct parts where each part i is marked with a word of length i over a quaternary alphabet whose letters appear in alphabetical order.

Original entry on oeis.org

1, 4, 10, 100, 195, 736, 6032, 11712, 35285, 100260, 871386, 1492820, 4438573, 10525720, 29825140, 241360728, 405645867, 1086289116, 2489722574, 6158961820, 14573822743, 123303661384, 192326074572, 504783599080, 1073240557055, 2539006453740, 5337585654950
Offset: 0

Views

Author

Alois P. Heinz, Sep 03 2015

Keywords

Comments

Also matrices with four rows of nonnegative integers with distinct positive column sums and total element sum n.

Crossrefs

Column k=4 of A261835.

Programs

  • Maple
    b:= proc(n, i, p) option remember;
          `if`(i*(i+1)/2n, 0, b(n-i, i-1, p+1)*binomial(i+3, 3))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..40);

A261843 Number of compositions of n into distinct parts where each part i is marked with a word of length i over a quinary alphabet whose letters appear in alphabetical order.

Original entry on oeis.org

1, 5, 15, 185, 420, 1876, 19320, 42610, 149115, 495205, 5516001, 10570145, 35897010, 97383790, 320607680, 3412039628, 6292069835, 19106603405, 49239854095, 138462457915, 378598491878, 4312038483490, 7316190877970, 21527078513430, 50933081112485
Offset: 0

Views

Author

Alois P. Heinz, Sep 03 2015

Keywords

Comments

Also matrices with five rows of nonnegative integers with distinct positive column sums and total element sum n.

Crossrefs

Column k=5 of A261835.

Programs

  • Maple
    b:= proc(n, i, p) option remember;
          `if`(i*(i+1)/2n, 0, b(n-i, i-1, p+1)*binomial(i+4, 4))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..30);

A261844 Number of compositions of n into distinct parts where each part i is marked with a word of length i over a senary alphabet whose letters appear in alphabetical order.

Original entry on oeis.org

1, 6, 21, 308, 798, 4116, 51114, 126288, 502947, 1912318, 26074881, 55301652, 210871038, 643901916, 2416831656, 32128430000, 64611765009, 218800524222, 625968110257, 1971079800312, 6127902153366, 88805517515284, 163129580373222, 530136843388056
Offset: 0

Views

Author

Alois P. Heinz, Sep 03 2015

Keywords

Comments

Also matrices with six rows of nonnegative integers with distinct positive column sums and total element sum n.

Crossrefs

Column k=6 of A261835.

Programs

  • Maple
    b:= proc(n, i, p) option remember;
          `if`(i*(i+1)/2n, 0, b(n-i, i-1, p+1)*binomial(i+5, 5))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..30);

A261845 Number of compositions of n into distinct parts where each part i is marked with a word of length i over a septenary alphabet whose letters appear in alphabetical order.

Original entry on oeis.org

1, 7, 28, 476, 1386, 8106, 117936, 322764, 1440579, 6172495, 99773646, 232110704, 981073576, 3329628176, 14040114012, 224848217580, 490210909629, 1828885568055, 5750093241172, 20040621544916, 69910543160794, 1238596672832718, 2451410591056280, 8705347941656016
Offset: 0

Views

Author

Alois P. Heinz, Sep 03 2015

Keywords

Comments

Also matrices with seven rows of nonnegative integers with distinct positive column sums and total element sum n.

Crossrefs

Column k=7 of A261835.

Programs

  • Maple
    b:= proc(n, i, p) option remember;
          `if`(i*(i+1)/2n, 0, b(n-i, i-1, p+1)*binomial(i+6, 6))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..25);

A261846 Number of compositions of n into distinct parts where each part i is marked with a word of length i over an octonary alphabet whose letters appear in alphabetical order.

Original entry on oeis.org

1, 8, 36, 696, 2250, 14712, 245508, 737352, 3644355, 17376832, 325225824, 823612736, 3820113552, 14264475648, 66782014272, 1254553664640, 2949123559125, 12008271483720, 41150373332932, 157262062899640, 608878151760410, 12804954311547288, 27181470392583156
Offset: 0

Views

Author

Alois P. Heinz, Sep 03 2015

Keywords

Comments

Also matrices with eight rows of nonnegative integers with distinct positive column sums and total element sum n.

Crossrefs

Column k=8 of A261835.

Programs

  • Maple
    b:= proc(n, i, p) option remember;
          `if`(i*(i+1)/2n, 0, b(n-i, i-1, p+1)*binomial(i+7, 7))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..25);
Showing 1-10 of 12 results. Next