A262085 Numbers n such that phi(n + 8) = phi(n) + 8 where phi(n) = A000010(n) is Euler's totient function.
3, 5, 11, 23, 24, 29, 36, 42, 48, 50, 53, 56, 59, 71, 72, 80, 89, 101, 102, 125, 131, 132, 149, 173, 176, 191, 230, 233, 248, 263, 269, 359, 368, 389, 401, 431, 449, 464, 479, 491, 563, 569, 593, 599, 638, 653, 656, 683, 701, 719, 743, 761, 821, 848, 911, 929, 983
Offset: 1
Examples
3 since phi(11) = phi(3) + 8 (3 and 11 are both prime). 24 is a solution since phi(32) = phi(24) + 8 (24 is 8 * 3; 3 is a Mersenne prime).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Wikipedia, Euler's totient function
Programs
-
Magma
[n: n in [1..1000] | EulerPhi(n+8) eq EulerPhi(n)+8]; // Vincenzo Librandi, Sep 11 2015
-
Maple
select(t -> numtheory:-phi(t+8) = numtheory:-phi(t)+8, [$1..1000]); # Robert Israel, Mar 04 2016
-
Mathematica
Select[Range@1000, EulerPhi@(# + 8)== EulerPhi[#] + 8 &] (* Vincenzo Librandi, Sep 11 2015 *)
-
PARI
is(n)=eulerphi(n + 8) == eulerphi(n) + 8 \\ Anders Hellström, Sep 11 2015
-
Sage
[n for n in (1..1000) if euler_phi(n+8) == euler_phi(n)+8] # Bruno Berselli, Mar 04 2016
Comments