cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262275 Prime numbers with an even number of steps in their prime index chain.

Original entry on oeis.org

3, 11, 17, 41, 67, 83, 109, 127, 157, 191, 211, 241, 277, 283, 353, 367, 401, 461, 509, 547, 563, 587, 617, 739, 773, 797, 859, 877, 967, 991, 1031, 1063, 1087, 1171, 1201, 1217, 1409, 1433, 1447, 1471, 1499, 1597, 1621, 1669, 1723, 1741, 1823, 1913, 2027, 2063, 2081, 2099, 2221, 2269, 2341, 2351
Offset: 1

Views

Author

Zak Seidov and Robert G. Wilson v, Sep 17 2015

Keywords

Comments

Old (incorrect) name was: Primes not appearing in A121543.
Number of terms less than 10^n: 1, 6, 30, 165, 1024, ... .

Examples

			11 is a term: 11 -> 5 -> 3 -> 2 -> 1, four (an even number of) steps "->" = pi = A000720.
		

Crossrefs

Cf. A000040, A000720, A078442, A121543, A333242 (complement in primes).

Programs

  • Maple
    b:= proc(n) option remember;
           `if`(isprime(n), 1+b(numtheory[pi](n)), 0)
        end:
    a:= proc(n) option remember; local p; p:= a(n-1);
          do p:= nextprime(p);
             if b(p)::even then break fi
          od; p
        end: a(1):=3:
    seq(a(n), n=1..60);  # Alois P. Heinz, Mar 15 2020
  • Mathematica
    fQ[n_] := If[ !PrimeQ[n] || (PrimeQ[n] && FreeQ[lst, PrimePi[n]]), AppendTo[lst, n]]; k = 2; lst = {1}; While[k < 2401, fQ@ k; k++]; Select[lst, PrimeQ]
  • PARI
    b(n)={my(k=0); while(isprime(n), k++; n=primepi(n)); k};
    apply(prime, select(n->b(n)%2, [1..500])) \\ Michel Marcus, Jan 03 2022; after A333242

Formula

From Alois P. Heinz, Mar 15 2020: (Start)
{ p in primes : A078442(p) mod 2 = 0 }.
a(n) = prime(A333242(n)). (End)

Extensions

New name from Alois P. Heinz, Mar 15 2020