cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262613 Sum of divisors of n-th generalized pentagonal number.

Original entry on oeis.org

1, 3, 6, 8, 28, 24, 36, 42, 48, 90, 72, 80, 144, 96, 168, 217, 182, 312, 180, 192, 372, 216, 576, 456, 280, 588, 336, 352, 864, 576, 720, 855, 558, 756, 702, 936, 1120, 600, 1080, 1116, 1024, 2016, 1008, 816, 1296, 1152, 2016, 2072, 1178, 1860, 1344, 1120, 3600
Offset: 1

Views

Author

Omar E. Pol, Nov 24 2015

Keywords

Comments

For a remarkable connection between the sum-of-divisors function (A000203) and the generalized pentagonal numbers (A001318) see A238442.

Crossrefs

Programs

  • Magma
    [DivisorSigma(1,(3*n^2+2*n+(n mod 2)*(2*n+1)) div 8): n in [1..70]]; // Vincenzo Librandi, Dec 21 2015
  • Mathematica
    DivisorSigma[1, Select[Accumulate[Range[200]]/3, IntegerQ]] (* G. C. Greubel, Jun 06 2017 *)
  • PARI
    a(n) = sigma((3*n^2 + 2*n + (n%2) * (2*n + 1)) / 8); \\ Michel Marcus, Dec 21 2015
    
  • Scheme
    (define (A262613 n) (A000203 (A001318 n))) ;; Scheme-program for A000203 given in that entry.
    ;; This uses memoization-macro definec:
    (definec (A001318 n) (if (zero? n) 0 (+ (if (even? n) (/ n 2) n) (A001318 (- n 1)))))
    ;; Antti Karttunen, Dec 20 2015
    

Formula

a(n) = A000203(A001318(n)).
Sum_{k=1..n} a(k) ~ (9/40) * n^3. - Amiram Eldar, Dec 14 2024