A262732 a(n) = (1/n!) * (5*n)!/(5*n/2)! * (3*n/2)!/(3*n)!.
1, 8, 126, 2240, 41990, 811008, 15967980, 318636032, 6421422150, 130395668480, 2663825039876, 54684895150080, 1127155102890908, 23311847679590400, 483537022180231320, 10054732930602762240, 209536624110664757830, 4375058594685417160704, 91505601042318156186900
Offset: 0
References
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..751
- Peter Bala, Notes on logarithmic differentiation, the binomial transform and series reversion
- Peter Bala, Some integer ratios of factorials
- Peter Bala, A supercongruence for A262732
Crossrefs
Programs
-
Maple
a := n -> 1/n! * (5*n)!/GAMMA(1 + 5*n/2) * GAMMA(1 + 3*n/2)/(3*n)!: seq(a(n), n = 0..18);
-
Mathematica
Table[1/n!*(5 n)!/(5 n/2)!*(3 n/2)!/(3 n)!, {n, 0, 18}] (* or *) Table[Sum[Binomial[8 n, n - 2 k] Binomial[3 n + k - 1, k], {k, 0, Floor[n/2]}], {n, 0, 18}] (* Michael De Vlieger, Aug 28 2016 *)
-
PARI
a(n) = sum(k=0, n, binomial(5*n,k)*binomial(4*n-k-1,n-k)); vector(30, n, a(n-1)) \\ Altug Alkan, Oct 03 2015
-
Python
from math import factorial from sympy import factorial2 def A262732(n): return int((factorial(5*n)*factorial2(3*n)<
Chai Wah Wu, Aug 10 2023
Formula
a(n) = Sum_{i = 0..n} binomial(5*n,i) * binomial(4*n-i-1,n-i).
a(n) = [x^n] ( (1 + x)^5/(1 - x)^3 )^n.
D-finite with recurrence a(n) = 20*(5*n - 1)*(5*n - 3)*(5*n - 7)*(5*n - 9)/( n*(3*n - 1)*(3*n - 3)*(3*n - 5) ) * a(n-2).
The o.g.f. exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 8*x + 95*x^2 + 1336*x^4 + ... has integer coefficients and equals (1/x) * (series reversion of x*(1 - x)^3/(1 + x)^5). See A262737.
a(n) ~ 2^n*3^(-3*n/2)*5^(5*n/2)/sqrt(2*Pi*n). - Ilya Gutkovskiy, Jul 31 2016
From Peter Bala, Aug 22 2016: (Start)
a(n) = Sum_{k = 0..floor(n/2)} binomial(8*n,n - 2*k) * binomial(3*n + k - 1,k).
O.g.f.: A(x) = Hypergeom([9/10, 7/10, 3/10, 1/10], [5/6, 1/2, 1/6], (12500/27)*x^2) + 8*x*Hypergeom([7/5, 6/5, 4/5, 3/5], [4/3, 3/2, 2/3], (12500/27)*x^2).
The o.g.f. is the diagonal of the bivariate rational function 1/(1 - t*(1 + x)^5/(1 - x)^3) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197. (End)
From Karol A. Penson, Apr 26 2018: (Start)
Integral representation of a(n) as the n-th moment of a positive function w(x) on the support (0, sqrt(12500/27)):
a(n) = Integral_{x=0..sqrt(12500/27)} x^n*w(x) dx,
where w(x) = sqrt(5)*2^(3/5)*csc((1/5)*Pi)*sin((1/10)*Pi)*hypergeom([1/10, 4/15, 3/5, 14/15], [1/5, 2/5, 4/5], 27*x^2*(1/12500))/(10*Pi*x^(4/5)) + sqrt(5)*2^(4/5)*csc(2*Pi*(1/5))*sin(3*Pi*(1/10))*hypergeom([3/10, 7/15, 4/5, 17/15], [2/5, 3/5, 6/5], 27*x^2*(1/12500))/(50*Pi*x^(2/5)) + sqrt(5)*2^(1/5)*csc(2*Pi*(1/5))*sin(3*Pi*(1/10))*x^(2/5)*hypergeom([7/10, 13/15, 6/5, 23/15], [4/5, 7/5, 8/5], 27*x^2*(1/12500))/(625*Pi) + 11*sqrt(5)*2^(2/5)*csc((1/5)*Pi)*sin((1/10)*Pi)*x^(4/5)*hypergeom([9/10, 16/15, 7/5, 26/15], [6/5, 8/5, 9/5], 27*x^2*(1/12500))/(50000*Pi). The function w(x) involves four different hypergeometric functions of type 4F3. The function w(x) is singular at both ends of the support. It is the solution of the Hausdorff moment problem and as such it is unique. (End)
From Peter Bala, Sep 15 2021: (Start)
a(n) = [x^n] (1 + 4*x)^((5*n-1)/2) = 4^n*binomial((5*n-1)/2,n).
a(p) == a(1) (mod p^3) for prime p >= 5.
More generally, we conjecture that a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) for prime p >= 5 and positive integers n and k. (End)
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] 1/((1-x)^(n+1) * (1-2*x)^(3*n)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(5*n,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(3*n+k-1,k) * binomial(2*n-k,n-k).
a(n) = [x^n] 1/(1-4*x)^((3*n+1)/2). (End)
Comments