cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262809 Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one or more components by one; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 13, 13, 1, 1, 1, 75, 409, 63, 1, 1, 1, 541, 23917, 16081, 321, 1, 1, 1, 4683, 2244361, 10681263, 699121, 1683, 1, 1, 1, 47293, 308682013, 14638956721, 5552351121, 32193253, 8989, 1, 1, 1, 545835, 58514835289, 35941784497263, 117029959485121, 3147728203035, 1538743249, 48639, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Oct 02 2015

Keywords

Comments

Also, A(n,k) is the number of alignments for k sequences of length n each (Slowinski 1998).
Row r > 0 is asymptotic to sqrt(r*Pi) * (r^(r-1)/(r-1)!)^n * n^(r*n+1/2) / (2^(r/2) * exp(r*n) * (log(2))^(r*n+1)), or equivalently to sqrt(r) * (r^(r-1)/(r-1)!)^n * (n!)^r / (2^r * (Pi*n)^((r-1)/2) * (log(2))^(r*n+1)). - Vaclav Kotesovec, Mar 23 2016
From Vaclav Kotesovec, Mar 23 2016: (Start)
Column k > 0 is asymptotic to sqrt(c(k)) * d(k)^n / (Pi*n)^((k-1)/2), where c(k) and d(k) are roots of polynomial equations of degree k, independent on n.
---------------------------------------------------
k d(k)
---------------------------------------------------
2 5.8284271247461900976033774484193...
3 56.9476283720414911685286267804411...
4 780.2794068067951456595241495989622...
5 13755.2719024115081712083954421541320...
6 296476.9162644200814909862281498491264...
7 7553550.6198338218721069097516499501996...
8 222082591.6017202421029000117685530884167...
9 7400694480.0494436216324852038000444393262...
10 275651917450.6709238286995776605620357737005...
---------------------------------------------------
d(k) is a root of polynomial:
---------------------------------------------------
k=2, 1 - 6*d + d^2
k=3, -1 + 3*d - 57*d^2 + d^3
k=4, 1 - 12*d - 218*d^2 - 780*d^3 + d^4
k=5, -1 + 5*d - 1260*d^2 - 3740*d^3 - 13755*d^4 + d^5
k=6, 1 - 18*d - 5397*d^2 - 123696*d^3 + 321303*d^4 - 296478*d^5 + d^6
k=7, -1 + 7*d - 24031*d^2 - 374521*d^3 - 24850385*d^4 + 17978709*d^5 - 7553553*d^6 + d^7
k=8, 1 - 24*d - 102692*d^2 - 9298344*d^3 + 536208070*d^4 - 7106080680*d^5 - 1688209700*d^6 - 222082584*d^7 + d^8
(End)
d(k) = (2^(1/k) - 1)^(-k). - David Bevan, Apr 07 2022
d(k) is asymptotic to (k/log(2))^k/sqrt(2). - David Bevan, Apr 07 2022
A(n,k) is the number of binary matrices with k columns and any number of nonzero rows with n ones in every column. - Andrew Howroyd, Jan 23 2020

Examples

			A(2,2) = 13: [(2,2),(1,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(0,1),(0,0)], [(2,2),(1,2),(1,1),(0,1),(0,0)], [(2,2),(1,2),(1,1),(0,0)], [(2,2),(1,2),(1,1),(1,0),(0,0)], [(2,2),(2,1),(1,1),(0,1),(0,0)], [(2,2),(2,1),(1,1),(0,0)], [(2,2),(2,1),(1,1),(1,0),(0,0)], [(2,2),(2,1),(2,0),(0,1),(0,0)], [(2,2),(2,1),(1,0),(0,0)], [(2,2),(1,1),(0,1),(0,0)], [(2,2),(1,1),(0,0)], [(2,2),(1,1),(1,0),(0,0)].
Square array A(n,k) begins:
  1, 1,    1,        1,             1,                   1, ...
  1, 1,    3,       13,            75,                 541, ...
  1, 1,   13,      409,         23917,             2244361, ...
  1, 1,   63,    16081,      10681263,         14638956721, ...
  1, 1,  321,   699121,    5552351121,     117029959485121, ...
  1, 1, 1683, 32193253, 3147728203035, 1050740615666453461, ...
		

Crossrefs

Columns: A000012 (k=0 and k=1), A001850 (k=2), A126086 (k=3), A263064 (k=4), A263065 (k=5), A263066 (k=6), A263067 (k=7), A263068 (k=8), A263069 (k=9), A263070 (k=10).
Rows: A000012 (n=0), A000670 (n=1), A055203 (n=2), A062208 (n=3), A062205 (n=4), A263061 (n=5), A263062 (n=6), A062204 (n=7), A263063 (n=8), A263071 (n=9), A263072 (n=10).
Main diagonal: A262810.

Programs

  • Maple
    A:= (n, k)-> add(add((-1)^i*binomial(j, i)*
         binomial(j-i, n)^k, i=0..j), j=0..k*n):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    A[, 0] =  1; A[n, k_] := Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jul 22 2016, after Alois P. Heinz *)
  • PARI
    T(n,k) = {my(m=n*k); sum(j=0, m, binomial(j,n)^k*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))} \\ Andrew Howroyd, Jan 23 2020

Formula

A(n,k) = Sum_{j=0..k*n} Sum_{i=0..j} (-1)^i*C(j,i)*C(j-i,n)^k.
A(n,k) = Sum_{i >= 0} binomial(i,n)^k/2^(i+1). - Peter Bala, Jan 30 2018
A(n,k) = Sum_{j=0..n*k} binomial(j,n)^k * Sum_{i=j..n*k} (-1)^(i-j) * binomial(i,j). - Andrew Howroyd, Jan 23 2020