A262856 Numerators of the Nielsen-Jacobsthal series leading to Euler's constant.
1, 43, 20431, 2150797323119, 9020112358835722225404403, 51551916515442115079024221439308876243677598340510141
Offset: 1
Examples
Numerators of 1/12, 43/420, 20431/240240, 2150797323119/36100888223400, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10
- Iaroslav V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only. Journal of Number Theory (Elsevier), vol. 158, pp. 365-396, 2016. arXiv version, arXiv:1501.00740 [math.NT], 2015.
Crossrefs
Programs
-
GAP
List(List([1..6],n->n*Sum([2^n+1..2^(n+1)],k->(-1)^(k+1)/k)),NumeratorRat); # Muniru A Asiru, Oct 29 2018
-
Magma
[Numerator(n*(&+[(-1)^(k+1)/k: k in [2^n+1..2^(n+1)]])): n in [1..6]]; // G. C. Greubel, Oct 28 2018
-
Mathematica
a[n_] := Numerator[n*Sum[(-1)^(k + 1)/k, {k, 2^n + 1, 2^(n + 1)}]]; Table[a[n], {n, 1, 8}]
-
PARI
a(n) = numerator(n*sum(k=2^n + 1,2^(n + 1),(-1)^(k + 1)/k));
Formula
a(n) = n * Sum_{k = 2^n + 1 .. 2^(n + 1)} (-1)^(k + 1)/k.
Comments