cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262856 Numerators of the Nielsen-Jacobsthal series leading to Euler's constant.

Original entry on oeis.org

1, 43, 20431, 2150797323119, 9020112358835722225404403, 51551916515442115079024221439308876243677598340510141
Offset: 1

Views

Author

Keywords

Comments

gamma = 1 - 1/12 - 43/420 - 20431/240240 - 2150797323119/36100888223400 - ..., see formula (36) in the reference below.

Examples

			Numerators of 1/12, 43/420, 20431/240240, 2150797323119/36100888223400, ...
		

Crossrefs

Cf. A075266, A075267, A001620, A195189, A002657, A002790, A262235, A075266, A006953, A001067, A262858 (denominators of this series).

Programs

  • GAP
    List(List([1..6],n->n*Sum([2^n+1..2^(n+1)],k->(-1)^(k+1)/k)),NumeratorRat); # Muniru A Asiru, Oct 29 2018
  • Magma
    [Numerator(n*(&+[(-1)^(k+1)/k: k in [2^n+1..2^(n+1)]])): n in [1..6]]; // G. C. Greubel, Oct 28 2018
    
  • Mathematica
    a[n_] := Numerator[n*Sum[(-1)^(k + 1)/k, {k, 2^n + 1, 2^(n + 1)}]]; Table[a[n], {n, 1, 8}]
  • PARI
    a(n) = numerator(n*sum(k=2^n + 1,2^(n + 1),(-1)^(k + 1)/k));
    

Formula

a(n) = n * Sum_{k = 2^n + 1 .. 2^(n + 1)} (-1)^(k + 1)/k.