A262858
Denominators of the Nielsen-Jacobsthal series leading to Euler's constant.
Original entry on oeis.org
12, 420, 240240, 36100888223400, 236453376820564453502272320, 2225626015166235263233958200740039423756478781341512000
Offset: 1
Denominators of 1/12, 43/420, 20431/240240, 2150797323119/36100888223400, ...
Cf.
A075266,
A075267,
A001620,
A195189,
A002657,
A002790,
A262235,
A075266,
A006953,
A001067,
A262856 (numerators of this series).
-
List(List([1..6],n->n*Sum([2^n+1..2^(n+1)],k->(-1)^(k+1)/k)),DenominatorRat); # Muniru A Asiru, Oct 29 2018
-
[Denominator(n*(&+[(-1)^(k+1)/k: k in [2^n+1..2^(n+1)]])): n in [1..6]]; // G. C. Greubel, Oct 28 2018
-
a[n_] := Denominator[n*Sum[(-1)^(k + 1)/k, {k, 2^n + 1, 2^(n + 1)}]]; Table[a[n], {n, 1, 8}]
-
a(n) = denominator(n*sum(k=2^n + 1,2^(n + 1),(-1)^(k + 1)/k));
A302120
Absolute value of the numerators of a series converging to Euler's constant.
Original entry on oeis.org
3, 11, 1, 311, 5, 7291, 243, 14462317, 3364621, 3337014731, 3155743303, 65528247068741, 2627553901, 1439156737843967, 2213381206625, 21757704362231905789, 2627003970197650333, 64925181492079668050329, 523317843775891637, 161371847993975070290712761, 78461950306245817433389909
Offset: 1
Numerators of 3/4, -11/96, -1/72, -311/46080, -5/1152, -7291/2322432, ...
-
[3] cat [Abs(Numerator( (1/2)*(-1)^(n+1)*(&+[StirlingFirst(n-1,k)*((-1/2)^(k+1) + 1)/(k+1): k in [1..n-1]])/Factorial(n) + (-1)^(n+1)*(&+[StirlingFirst(n,k)/(k+1): k in [1..n]])/(n*Factorial(n)) )): n in [2..30]]; // G. C. Greubel, Oct 29 2018
-
a:= proc(n) abs(numer((1/2)*(-1)^(n+1)*(add(Stirling1(n-1, l)*((-1/2)^(l+1)+1)/(l+1), l = 0 .. n-1))/(n)!+(-1)^(n+1)*(add(Stirling1(n, l)/(l+1), l = 1 .. n))/(n*(n)!))) end proc: seq(a(n), n=1..23);
-
a[n_] := Numerator[(1/2)*(-1)^(n+1)*(Sum[StirlingS1[n-1,l]*((-1/2)^(l+1) + 1)/(l+1),{l,0,n-1}])/(n!) + (-1)^(n+1)*(Sum[StirlingS1[n, l]/(l+1),{l,1,n}])/(n*n!)]; Table[Abs[a[n]], {n, 1, 24}]
-
a(n) = abs(numerator((1/2)*(-1)^(n+1)*(sum(l=0,n-1,stirling(n-1,l)*((-1/2)^(l+1) + 1)/(l+1))) /(n!) + (-1)^(n+1)*(sum(l=1,n,stirling(n,l)/(l+1)))/(n*n!)))
A302121
Denominators of a series converging to Euler's constant.
Original entry on oeis.org
4, 96, 72, 46080, 1152, 2322432, 100352, 7431782400, 2090188800, 2452488192000, 2697737011200, 64274810535936000, 2923954176000, 1799694695006208000, 3085190905724928, 33566877054287216640000, 4458100858772520960000, 120538655501945394954240000, 1057781497894797312000
Offset: 1
Denominators of 3/4, -11/96, -1/72, -311/46080, -5/1152, -7291/2322432, ...
-
a := proc (n) options operator, arrow; denum((1/2)*(-1)^(n+1)*(sum(Stirling1(n-1, l)*((-1/2)^(l+1)+1)/(l+1), l = 0 .. n-1))/factorial(n)+(-1)^(n+1)*(sum(Stirling1(n, l)/(l+1), l = 1 .. n))/(n*factorial(n))) end proc
-
a[n_] := Denominator[(1/2)*(-1)^(n+1)*(Sum[StirlingS1[n-1,l]*((-1/2)^(l+1) + 1)/(l+1),{l,0,n-1}])/(n!) + (-1)^(n+1)*(Sum[StirlingS1[n, l]/(l+1),{l,1,n}])/(n*n!)]; Table[a[n], {n, 1, 24}]
-
a(n) = denominator((1/2)*(-1)^(n+1)*(sum(l=0,n-1,stirling(n-1,l)*((-1/2)^(l+1) + 1)/(l+1)))/(n!) + (-1)^(n+1)*(sum(l=1,n,stirling(n,l)/(l+1)))/(n*n!))
Showing 1-3 of 3 results.
Comments