cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A262858 Denominators of the Nielsen-Jacobsthal series leading to Euler's constant.

Original entry on oeis.org

12, 420, 240240, 36100888223400, 236453376820564453502272320, 2225626015166235263233958200740039423756478781341512000
Offset: 1

Views

Author

Keywords

Comments

gamma = 1 - 1/12 - 43/420 - 20431/240240 - 2150797323119/36100888223400 - ..., see formula (36) in the reference below.

Examples

			Denominators of 1/12, 43/420, 20431/240240, 2150797323119/36100888223400, ...
		

Crossrefs

Cf. A075266, A075267, A001620, A195189, A002657, A002790, A262235, A075266, A006953, A001067, A262856 (numerators of this series).

Programs

  • GAP
    List(List([1..6],n->n*Sum([2^n+1..2^(n+1)],k->(-1)^(k+1)/k)),DenominatorRat); # Muniru A Asiru, Oct 29 2018
  • Magma
    [Denominator(n*(&+[(-1)^(k+1)/k: k in [2^n+1..2^(n+1)]])): n in [1..6]];  // G. C. Greubel, Oct 28 2018
    
  • Mathematica
    a[n_] := Denominator[n*Sum[(-1)^(k + 1)/k, {k, 2^n + 1, 2^(n + 1)}]]; Table[a[n], {n, 1, 8}]
  • PARI
    a(n) = denominator(n*sum(k=2^n + 1,2^(n + 1),(-1)^(k + 1)/k));
    

Formula

a(n) = n * Sum_{k = 2^n + 1 .. 2^(n + 1)} (-1)^(k + 1)/k.

A302120 Absolute value of the numerators of a series converging to Euler's constant.

Original entry on oeis.org

3, 11, 1, 311, 5, 7291, 243, 14462317, 3364621, 3337014731, 3155743303, 65528247068741, 2627553901, 1439156737843967, 2213381206625, 21757704362231905789, 2627003970197650333, 64925181492079668050329, 523317843775891637, 161371847993975070290712761, 78461950306245817433389909
Offset: 1

Views

Author

Keywords

Comments

gamma = 3/4 - 11/96 - 1/72 - 311/46080 - 5/1152 - 7291/2322432 - ..., see formula (104) in the reference below.

Examples

			Numerators of 3/4, -11/96, -1/72, -311/46080, -5/1152, -7291/2322432, ...
		

Crossrefs

Cf. A302121 (denominators of this series), A262856, A262858.

Programs

  • Magma
    [3] cat [Abs(Numerator( (1/2)*(-1)^(n+1)*(&+[StirlingFirst(n-1,k)*((-1/2)^(k+1) + 1)/(k+1): k in [1..n-1]])/Factorial(n) + (-1)^(n+1)*(&+[StirlingFirst(n,k)/(k+1): k in [1..n]])/(n*Factorial(n)) )): n in [2..30]]; // G. C. Greubel, Oct 29 2018
  • Maple
    a:= proc(n) abs(numer((1/2)*(-1)^(n+1)*(add(Stirling1(n-1, l)*((-1/2)^(l+1)+1)/(l+1), l = 0 .. n-1))/(n)!+(-1)^(n+1)*(add(Stirling1(n, l)/(l+1), l = 1 .. n))/(n*(n)!))) end proc: seq(a(n), n=1..23);
  • Mathematica
    a[n_] := Numerator[(1/2)*(-1)^(n+1)*(Sum[StirlingS1[n-1,l]*((-1/2)^(l+1) + 1)/(l+1),{l,0,n-1}])/(n!) + (-1)^(n+1)*(Sum[StirlingS1[n, l]/(l+1),{l,1,n}])/(n*n!)]; Table[Abs[a[n]], {n, 1, 24}]
  • PARI
    a(n) = abs(numerator((1/2)*(-1)^(n+1)*(sum(l=0,n-1,stirling(n-1,l)*((-1/2)^(l+1) + 1)/(l+1))) /(n!) + (-1)^(n+1)*(sum(l=1,n,stirling(n,l)/(l+1)))/(n*n!)))
    

Formula

a(n) = abs(Numerators of ((1/2)*(-1)^(n+1)*(Sum_{l=0,n-1} (S_1(n-1,l)*((-1/2)^(l+1) + 1)/(l+1)))/(n!) + (-1)^(n+1)*(Sum_{l=1,n} S_1(n,l)/(l+1)))/(n*n!))), where S_1(x,y) are the signed Stirling numbers of the first kind.

A302121 Denominators of a series converging to Euler's constant.

Original entry on oeis.org

4, 96, 72, 46080, 1152, 2322432, 100352, 7431782400, 2090188800, 2452488192000, 2697737011200, 64274810535936000, 2923954176000, 1799694695006208000, 3085190905724928, 33566877054287216640000, 4458100858772520960000, 120538655501945394954240000, 1057781497894797312000
Offset: 1

Views

Author

Keywords

Comments

gamma = 3/4 - 11/96 - 1/72 - 311/46080 - 5/1152 - 7291/2322432 - ..., see formula (104) in the reference below.

Examples

			Denominators of 3/4, -11/96, -1/72, -311/46080, -5/1152, -7291/2322432, ...
		

Crossrefs

Cf. A302120 (numerators of this series), A262856, A262858.

Programs

  • Maple
    a := proc (n) options operator, arrow; denum((1/2)*(-1)^(n+1)*(sum(Stirling1(n-1, l)*((-1/2)^(l+1)+1)/(l+1), l = 0 .. n-1))/factorial(n)+(-1)^(n+1)*(sum(Stirling1(n, l)/(l+1), l = 1 .. n))/(n*factorial(n))) end proc
  • Mathematica
    a[n_] := Denominator[(1/2)*(-1)^(n+1)*(Sum[StirlingS1[n-1,l]*((-1/2)^(l+1) + 1)/(l+1),{l,0,n-1}])/(n!) + (-1)^(n+1)*(Sum[StirlingS1[n, l]/(l+1),{l,1,n}])/(n*n!)]; Table[a[n], {n, 1, 24}]
  • PARI
    a(n) = denominator((1/2)*(-1)^(n+1)*(sum(l=0,n-1,stirling(n-1,l)*((-1/2)^(l+1) + 1)/(l+1)))/(n!) + (-1)^(n+1)*(sum(l=1,n,stirling(n,l)/(l+1)))/(n*n!))

Formula

a(n) = Denominators of ((1/2)*(-1)^(n+1)*(Sum_{l=0..n-1} (S_1(n-1,l)*((-1/2)^(l+1) + 1)/(l+1)))/(n!) + (-1)^(n+1)*(Sum_{l=1..n} S_1(n,l)/(l+1)))/(n*n!)), where S_1(x,y) are the signed Stirling numbers of the first kind.
Showing 1-3 of 3 results.