cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A262879 Expansion of Product_{k>=1} (1+x^(3*k-2))^k.

Original entry on oeis.org

1, 1, 0, 0, 2, 2, 0, 3, 4, 1, 4, 10, 6, 5, 16, 14, 9, 28, 32, 17, 40, 63, 41, 63, 112, 83, 94, 187, 171, 156, 301, 319, 260, 467, 580, 465, 713, 981, 818, 1095, 1627, 1452, 1682, 2584, 2510, 2632, 4047, 4266, 4162, 6181, 7054, 6685, 9396, 11423, 10753, 14132
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 04 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=100; CoefficientList[Series[Product[(1+x^(3k-2))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax=100; CoefficientList[Series[E^Sum[(-1)^(j+1)/j*x^j/(1-x^(3j))^2,{j,1,nmax}],{x,0,nmax}],x]
    Clear[a]; a[n_]:=a[n] = If[n==0, 1, Sum[Sum[d*{0, 2*Floor[d/6] + 1, -Floor[d/6] - 1, 0, 2*Floor[d/6] + 2, 0}[[1 + Mod[d, 6]]], {d, Divisors[j]}] * a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 100}]

Formula

a(n) ~ exp(2^(-4/3) * 3^(2/3) * Zeta(3)^(1/3) * n^(2/3) + Pi^2 * n^(1/3) / (2^(2/3) * 3^(8/3) * Zeta(3)^(1/3)) - Pi^4/(2916*Zeta(3))) * Zeta(3)^(1/6) / (2^(19/36) * 3^(2/3) * sqrt(Pi) * n^(2/3)).

A262924 Expansion of Product_{k>=1} (1 + x^(3*k-1))^(3*k-1) * (1 + x^(3*k-2))^(3*k-2).

Original entry on oeis.org

1, 1, 2, 2, 5, 10, 13, 25, 35, 57, 87, 134, 211, 306, 458, 684, 996, 1465, 2129, 3073, 4411, 6288, 8977, 12707, 17913, 25185, 35231, 49078, 68228, 94490, 130408, 179425, 246121, 336681, 459239, 624842, 847986, 1147728, 1549773, 2087972, 2806455, 3764136
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 04 2015

Keywords

Comments

Convolution of A262948 and A262949.

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[(1 + x^(3*k-1))^(3*k-1)*(1 + x^(3*k-2))^(3*k-2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(3*Zeta(3)^(1/3)*n^(2/3)/2) * Zeta(3)^(1/6) / (2^(1/3) * sqrt(3*Pi) * n^(2/3)).

A262948 Expansion of Product_{k>=1} (1 + x^(3*k-1))^(3*k-1).

Original entry on oeis.org

1, 0, 2, 0, 1, 5, 0, 10, 8, 5, 26, 11, 28, 62, 24, 101, 111, 77, 260, 202, 268, 583, 382, 761, 1165, 847, 1940, 2198, 2061, 4346, 4084, 5078, 9039, 7844, 11978, 17620, 15721, 26648, 33219, 32894, 56000, 61494, 69653, 111884, 114265, 146557, 214864, 214967
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 05 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[(1 + x^(3*k-1))^(3*k-1),{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ exp(3 * 2^(-4/3) * Zeta(3)^(1/3) * n^(2/3)) * Zeta(3)^(1/6) / (2^(7/12) * sqrt(3*Pi) * n^(2/3)).

A285288 Expansion of Product_{k>=0} (1 + x^(4*k+1))^(4*k+1).

Original entry on oeis.org

1, 1, 0, 0, 0, 5, 5, 0, 0, 9, 19, 10, 0, 13, 58, 55, 10, 17, 118, 191, 95, 26, 223, 512, 400, 116, 362, 1175, 1329, 564, 609, 2368, 3593, 2218, 1246, 4402, 8600, 7118, 3433, 7792, 18503, 19778, 10702, 13924, 37009, 49017, 32097, 27141, 69629, 111251, 88972
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2017

Keywords

Crossrefs

Product_{k>=0} (1 + x^(m*k+1))^(m*k+1): A262736 (m=2), A262949 (m=3), this sequence (m=4).

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^(4*k-3))^(4*k-3), {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Apr 16 2017 *)

Formula

a(n) = (-1)^n * A285070(n).
a(n) ~ exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / 4) * Zeta(3)^(1/6) / (2^(23/24) * 3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Apr 16 2017

A285338 Expansion of Product_{k>=1} (1 + x^(5*k-4))^(5*k-4).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 6, 6, 0, 0, 0, 11, 26, 15, 0, 0, 16, 82, 86, 20, 0, 21, 172, 316, 180, 15, 26, 328, 872, 790, 226, 37, 538, 2043, 2681, 1310, 202, 845, 4184, 7426, 5390, 1447, 1290, 7855, 18067, 17705, 7277, 2662, 13723, 39468, 50030, 28707, 8742, 22979, 79760
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 17 2017

Keywords

Comments

For all n<=30 a(n) = abs(A285071(n)), but a(31) <> abs(A285071(31)).
In general, if m >= 1 and g.f. = Product_{k>=1} (1 + x^(m*k-m+1))^(m*k-m+1), then a(n, m) ~ exp(2^(-4/3) * 3^(4/3) * m^(-1/3) * Zeta(3)^(1/3) * n^(2/3)) * Zeta(3)^(1/6) / (2^(1/6 + 1/(2*m) + m/12) * 3^(1/3) * m^(1/6) * sqrt(Pi) * n^(2/3)).

Crossrefs

Product_{k>=0} (1 + x^(m*k+1))^(m*k+1): A026007 (m=1), A262736 (m=2), A262949 (m=3), A285288 (m=4), this sequence (m=5).

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(5*k-4))^(5*k-4), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2^(-4/3) * 3^(4/3) * 5^(-1/3) * Zeta(3)^(1/3) * n^(2/3)) * Zeta(3)^(1/6) / (2^(41/60) * 3^(1/3) * 5^(1/6) * sqrt(Pi) * n^(2/3)).

A285286 Expansion of Product_{k>=0} 1/(1 + x^(3*k+1))^(3*k+1).

Original entry on oeis.org

1, -1, 1, -1, -3, 3, -3, -4, 14, -14, 4, 24, -44, 31, 37, -107, 126, -4, -208, 329, -175, -319, 777, -704, -236, 1507, -1945, 430, 2532, -4575, 2781, 3236, -9301, 8697, 2085, -16902, 21804, -5233, -26573, 47225, -27047, -34332, 92242, -80162, -26926, 162426
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2017

Keywords

Crossrefs

Product_{k>=0} 1/(1 + x^(m*k+1))^(m*k+1): A284628 (m=2), this sequence (m=3), A285287 (m=4).
Cf. A262949.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 + x^(3*k-2))^(3*k-2), {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Apr 16 2017 *)
Showing 1-6 of 6 results.