A263132 Positive values of m such that binomial(4*m - 1, m) is odd.
1, 2, 3, 4, 6, 8, 11, 12, 16, 22, 24, 32, 43, 44, 48, 64, 86, 88, 96, 128, 171, 172, 176, 192, 256, 342, 344, 352, 384, 512, 683, 684, 688, 704, 768, 1024, 1366, 1368, 1376, 1408, 1536, 2048, 2731, 2732, 2736, 2752, 2816, 3072, 4096, 5462, 5464, 5472, 5504
Offset: 1
Examples
1) Notice how this sequence can be read from Table 1 below by moving through the table in a sequence of 'knight moves' (1 down and 2 to the left) starting from the first row. For example, starting at 11 on the top row we move in a series of knights moves 11 -> 12 -> 16, then return to the top row at 22 and move 22 -> 24 -> 32, return to the top row at 43 and move 43 -> 44 -> 48 -> 64, then return to top row at 86 and so on. ........................................................ . Table 1: 4^n * ceiling(2^k/3) for n >= 0, k >= 1 . ........................................................ n\k| 1 2 3 4 5 6 7 8 9 ---+---------------------------------------------------- 0 | 1 2 3 6 11 22 43 86 171 ... 1 | 4 8 12 24 44 88 172 ... 2 | 16 32 48 96 176 ... 3 | 64 128 192 ... 4 | 256 ... ... 2) Notice how this sequence can be read from Table 2 below in a sequence of 'knight moves' (2 down and 1 to the left) starting from the first two rows. For example, starting at 43 in the first row we jump 43 -> 44 -> 48 -> 64, then return to the second row at 86 and jump 86 -> 88 -> 96 -> 128, followed by 171 -> 172 -> 176 -> 192 -> 256, and so on. .................................................... . Table 2: 2^n * (2^(2*k + 1) + 1)/3, n,k >= 0 . .................................................... n\k| 0 1 2 3 4 5 ---+---------------------------------------------- 0 | 1 3 11 43 171 683 ... 1 | 2 6 22 86 342 1366 ... 2 | 4 12 44 172 684 2732 ... 3 | 8 24 88 344 1368 5464 ... 4 | 16 48 176 688 2736 10928 ... 5 | 32 96 352 1376 5472 21856 ... 6 | 64 192 704 2752 10944 43712 ... 7 | 128 384 1408 5504 21888 87424 ... 8 | 256 ...
Crossrefs
Programs
-
Magma
[n: n in [1..6000] | Binomial(4*n-1, n) mod 2 eq 1]; // Vincenzo Librandi, Oct 12 2015
-
Maple
for n from 1 to 5000 do if mod(binomial(4*n-1, n), 2) = 1 then print(n) end if end do;
-
Mathematica
Select[Range[6000],OddQ[Binomial[4#-1,#]]&] (* Harvey P. Dale, Dec 26 2015 *)
-
PARI
for(n=1, 1e4, if (binomial(4*n-1, n) % 2 == 1, print1(n", "))) \\ Altug Alkan, Oct 11 2015
-
PARI
a(n) = my(r,s=sqrtint(4*n-3,&r)); (1<
Kevin Ryde, Jun 14 2025 -
Python
A263132_list = [m for m in range(1,10**6) if not ~(4*m-1) & m] # Chai Wah Wu, Feb 07 2016
Formula
a(n) = A263133(n) + 1.
m is a term if and only if m AND NOT (4*m-1) = 0 where AND and NOT are bitwise operators. - Chai Wah Wu, Feb 07 2016
Extensions
More terms from Vincenzo Librandi, Oct 12 2015
Comments