A263226 a(n) = 15*n^2 - 13*n.
0, 2, 34, 96, 188, 310, 462, 644, 856, 1098, 1370, 1672, 2004, 2366, 2758, 3180, 3632, 4114, 4626, 5168, 5740, 6342, 6974, 7636, 8328, 9050, 9802, 10584, 11396, 12238, 13110, 14012, 14944, 15906, 16898, 17920, 18972, 20054, 21166, 22308, 23480, 24682, 25914
Offset: 0
Links
- M. R. Farahani, The Wiener index and Hosoya polynomial of a class of Jahangir graphs J_{3,m}, Fundamental J. Math. and Math. Sci., 3 (1), 91-96, 2015.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[15*n^2-13*n: n in [0..50]]; // Bruno Berselli, Oct 15 2015
-
Maple
seq(15*n^2-13*n, n = 0 .. 40);
-
Mathematica
Table[15 n^2 - 13 n, {n, 0, 40}] (* Vincenzo Librandi, Oct 13 2015 *) LinearRecurrence[{3,-3,1},{0,2,34},50] (* Harvey P. Dale, Jul 27 2018 *)
-
PARI
vector(50, n, n--; 15*n^2 - 13*n) \\ Altug Alkan, Oct 12 2015
Formula
G.f.: 2*x*(1 + 14*x)/(1 - x)^3. - Vincenzo Librandi, Oct 13 2015
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Oct 13 2015
Comments