cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263226 a(n) = 15*n^2 - 13*n.

Original entry on oeis.org

0, 2, 34, 96, 188, 310, 462, 644, 856, 1098, 1370, 1672, 2004, 2366, 2758, 3180, 3632, 4114, 4626, 5168, 5740, 6342, 6974, 7636, 8328, 9050, 9802, 10584, 11396, 12238, 13110, 14012, 14944, 15906, 16898, 17920, 18972, 20054, 21166, 22308, 23480, 24682, 25914
Offset: 0

Views

Author

Emeric Deutsch, Oct 12 2015

Keywords

Comments

For n>=3, a(n) = the Wiener index of the Jahangir graph J_{3,n}. The Jahangir graph J_{3,n} is a connected graph consisting of a cycle graph C(3n) and one additional center vertex that is adjacent to n vertices of C(3n) at distances 3 to each other on C(3n).
The Hosoya polynomial of J_(3,n) is 4nx + (1/2)n(n+9)x^2 + 2n(n-1)x^3 + n(2n-5)x^4.

Crossrefs

Programs

  • Magma
    [15*n^2-13*n: n in [0..50]]; // Bruno Berselli, Oct 15 2015
  • Maple
    seq(15*n^2-13*n, n = 0 .. 40);
  • Mathematica
    Table[15 n^2 - 13 n, {n, 0, 40}] (* Vincenzo Librandi, Oct 13 2015 *)
    LinearRecurrence[{3,-3,1},{0,2,34},50] (* Harvey P. Dale, Jul 27 2018 *)
  • PARI
    vector(50, n, n--; 15*n^2 - 13*n) \\ Altug Alkan, Oct 12 2015
    

Formula

G.f.: 2*x*(1 + 14*x)/(1 - x)^3. - Vincenzo Librandi, Oct 13 2015
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Oct 13 2015