A263293 Triangle read by rows: T(n,k) is the number of unlabeled simple graphs with n vertices and maximum vertex degree k, (0 <= k < n).
1, 1, 1, 1, 1, 2, 1, 2, 4, 4, 1, 2, 8, 12, 11, 1, 3, 15, 43, 60, 34, 1, 3, 25, 121, 360, 378, 156, 1, 4, 41, 378, 2166, 4869, 3843, 1044, 1, 4, 65, 1095, 14306, 68774, 113622, 64455, 12346, 1, 5, 100, 3441, 104829, 1141597, 3953162, 4605833, 1921532, 274668
Offset: 1
Examples
Triangle begins: 1, 1, 1, 1, 1, 2, 1, 2, 4, 4, 1, 2, 8, 12, 11, 1, 3, 15, 43, 60, 34, 1, 3, 25, 121, 360, 378, 156, 1, 4, 41, 378, 2166, 4869, 3843, 1044, ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..210 (first 20 rows)
- FindStat - Combinatorial Statistic Finder, The degree of a graph
- Eric Weisstein's World of Mathematics, Maximum Vertex Degree
Crossrefs
Formula
From Geoffrey Critzer, Sep 10 2016: (Start)
G.f. for column k=0: A(x)=1/(1-x).
G.f. for column k=1: B(x)=x^2/((1-x^2)(1-x)).
G.f. for column k=2: 1/((1-x)(1-x^2))*Product_{i>=3} 1/(1-x^i)^2 - B(x) - A(x).
(End)
T(n, 0) = 1.
T(n, n - 1) = A000088(n - 1).
T(n, k) = A294217(n, n - 1 - k). - Andrew Howroyd, Sep 03 2019
Extensions
Rows n=9 and 10 added by Eric W. Weisstein, Oct 24 2017
Comments