A263576 Stirling transform of Fibonacci numbers (A000045).
0, 1, 2, 6, 23, 101, 490, 2597, 14926, 92335, 610503, 4288517, 31848677, 249044068, 2043448968, 17540957166, 157108128963, 1464813176354, 14187155168782, 142469605397465, 1480903718595721, 15908940627242898, 176382950500197589, 2015650339677868116
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..564
- Eric Weisstein's MathWorld, Fibonacci Number.
- Eric Weisstein's MathWorld, Stirling Transform.
- Eric Weisstein's MathWorld, Bell Polynomial.
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, (<<0|1>, <1|1>>^m)[1, 2], m*b(n-1, m)+b(n-1, m+1)) end: a:= n-> b(n, 0): seq(a(n), n=0..23); # Alois P. Heinz, Aug 03 2021
-
Mathematica
Table[Sum[Fibonacci[k] StirlingS2[n, k], {k, 0, n}], {n, 0, 23}] Table[Simplify[(BellB[n, GoldenRatio] - BellB[n, 1 - GoldenRatio])/Sqrt[5]], {n, 0, 23}]
Formula
a(n) = Sum_{k=0..n} A000045(k)*Stirling2(n,k).
Sum_{k=0..n} a(k)*Stirling1(n,k) = A000045(n).
Let phi=(1+sqrt(5))/2.
a(n) = (B_n(phi)-B_n(1-phi))/sqrt(5), where B_n(x) is n-th Bell polynomial.
2*B_n(phi) = A263575(n) + a(n)*sqrt(5).
E.g.f.: (exp((exp(x)-1)*phi)-exp((exp(x)-1)*(1-phi)))/sqrt(5).
G.f.: Sum_{j>=1} Fibonacci(j)*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 06 2019