cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263576 Stirling transform of Fibonacci numbers (A000045).

Original entry on oeis.org

0, 1, 2, 6, 23, 101, 490, 2597, 14926, 92335, 610503, 4288517, 31848677, 249044068, 2043448968, 17540957166, 157108128963, 1464813176354, 14187155168782, 142469605397465, 1480903718595721, 15908940627242898, 176382950500197589, 2015650339677868116
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 21 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, (<<0|1>,
           <1|1>>^m)[1, 2], m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 03 2021
  • Mathematica
    Table[Sum[Fibonacci[k] StirlingS2[n, k], {k, 0, n}], {n, 0, 23}]
    Table[Simplify[(BellB[n, GoldenRatio] - BellB[n, 1 - GoldenRatio])/Sqrt[5]], {n, 0, 23}]

Formula

a(n) = Sum_{k=0..n} A000045(k)*Stirling2(n,k).
Sum_{k=0..n} a(k)*Stirling1(n,k) = A000045(n).
Let phi=(1+sqrt(5))/2.
a(n) = (B_n(phi)-B_n(1-phi))/sqrt(5), where B_n(x) is n-th Bell polynomial.
2*B_n(phi) = A263575(n) + a(n)*sqrt(5).
E.g.f.: (exp((exp(x)-1)*phi)-exp((exp(x)-1)*(1-phi)))/sqrt(5).
G.f.: Sum_{j>=1} Fibonacci(j)*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 06 2019