A263575
Stirling transform of Lucas numbers (A000032).
Original entry on oeis.org
2, 1, 4, 14, 53, 227, 1092, 5791, 33350, 206511, 1365563, 9590847, 71216713, 556861216, 4569168866, 39222394456, 351304769679, 3275433717440, 31723522878974, 318571978752719, 3311400814816987, 35573458376435132, 394404160256111139, 4507130777468928696
Offset: 0
-
Table[Sum[LucasL[k] StirlingS2[n, k], {k, 0, n}], {n, 0, 23}]
Table[Simplify[BellB[n, GoldenRatio] + BellB[n, 1 - GoldenRatio]], {n, 0, 23}]
A320352
Expansion of e.g.f. (exp(x) - 1)/(exp(x) - exp(2*x) + 1).
Original entry on oeis.org
0, 1, 3, 19, 159, 1651, 20583, 299419, 4977759, 93097891, 1934655063, 44224195819, 1102820674959, 29792843865331, 866769668577543, 27018340680076219, 898343366411181759, 31736205208791131971, 1187110673532381604023, 46871464129796857140619, 1948059531745350527058159
Offset: 0
-
seq(n!*coeff(series((exp(x) - 1)/(exp(x) - exp(2*x) + 1), x=0, 22), x, n), n=0..21); # Paolo P. Lava, Jan 09 2019
-
nmax = 20; CoefficientList[Series[(Exp[x] - 1)/(Exp[x] - Exp[2 x] + 1), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] Fibonacci[k] k!, {k, 0, n}], {n, 0, 20}]
A323620
Expansion of e.g.f. 2*sqrt(1 + x)*sinh(sqrt(5)*log(1 + x)/2)/sqrt(5).
Original entry on oeis.org
0, 1, 0, 1, -4, 19, -108, 719, -5496, 47465, -457160, 4858865, -56490060, 713165035, -9715762980, 142069257055, -2219386098160, 36889108220305, -650018185589520, 12103669982341025, -237476572759473300, 4896758300881695875, -105866710959427454300, 2394660132226522508975
Offset: 0
-
[(&+[StirlingFirst(n,k)*Fibonacci(k): k in [0..n]]): n in [0..25]]; // G. C. Greubel, Feb 07 2019
-
FullSimplify[nmax = 23; CoefficientList[Series[2 Sqrt[1 + x] Sinh[Sqrt[5] Log[1 + x]/2]/Sqrt[5], {x, 0, nmax}], x] Range[0, nmax]!]
Table[Sum[StirlingS1[n, k] Fibonacci[k], {k, 0, n}], {n, 0, 23}]
-
{a(n) = sum(k=0,n, stirling(n,k,1)*fibonacci(k))};
vector(25, n, n--; a(n)) \\ G. C. Greubel, Feb 07 2019
-
[sum((-1)^(k+n)*stirling_number1(n,k)*fibonacci(k) for k in (0..n)) for n in (0..25)] # G. C. Greubel, Feb 07 2019
A323631
Stirling transform of Pell numbers (A000129).
Original entry on oeis.org
0, 1, 3, 12, 57, 305, 1798, 11531, 79707, 589426, 4634471, 38547861, 337734048, 3105588629, 29877483743, 299906019892, 3133423928557, 34002824654365, 382507638525838, 4452923233600903, 53561431659306039, 664728428775177890, 8500763141347126563, 111886109022440334593, 1513989730079050155936
Offset: 0
-
b:= proc(n, m) option remember; `if`(n=0,
(<<2|1>, <1|0>>^m)[1, 2], m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..24); # Alois P. Heinz, Jun 23 2023
-
FullSimplify[nmax = 24; CoefficientList[Series[Exp[Exp[x] - 1] Sinh[Sqrt[2] (Exp[x] - 1)]/Sqrt[2], {x, 0, nmax}], x] Range[0, nmax]!]
Table[Sum[StirlingS2[n, k] Fibonacci[k, 2], {k, 0, n}], {n, 0, 24}]
Table[Sum[Binomial[n, k] BellB[n - k] (BellB[k, Sqrt[2]] - BellB[k, -Sqrt[2]])/(2 Sqrt[2]), {k, 0, n}], {n, 0, 24}]
A323632
Stirling transform of Jacobsthal numbers (A001045).
Original entry on oeis.org
0, 1, 2, 7, 31, 152, 813, 4741, 29956, 203305, 1470795, 11276718, 91221419, 775677177, 6910797962, 64326920851, 623981351195, 6293426736344, 65867162316433, 714062197266081, 8005397253530924, 92676194887133693, 1106385117766336919, 13603803900252612966, 172082332173918135687
Offset: 0
-
b:= proc(n, m) option remember;
`if`(n=0, round(2^m/3), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..24); # Alois P. Heinz, Aug 06 2021
-
nmax = 24; CoefficientList[Series[(Exp[2 (Exp[x] - 1)] - Exp[1 - Exp[x]])/3, {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] (2^k - (-1)^k)/3, {k, 0, n}], {n, 0, 24}]
Table[(BellB[n, 2] - BellB[n, -1])/3, {n, 0, 24}]
Showing 1-5 of 5 results.
Comments