cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263719 Decimal expansion of the real root r of r^3 + r - 1 = 0.

Original entry on oeis.org

6, 8, 2, 3, 2, 7, 8, 0, 3, 8, 2, 8, 0, 1, 9, 3, 2, 7, 3, 6, 9, 4, 8, 3, 7, 3, 9, 7, 1, 1, 0, 4, 8, 2, 5, 6, 8, 9, 1, 1, 8, 8, 5, 8, 1, 8, 9, 7, 9, 9, 8, 5, 7, 7, 8, 0, 3, 7, 2, 8, 6, 0, 6, 6, 3, 9, 8, 9, 6, 6, 7, 8, 6, 8, 6, 9, 9, 8, 0, 2, 1, 0, 8, 1, 7, 3, 2, 0, 4, 3, 7, 8, 6, 2, 0, 5, 1, 2, 8, 2, 9, 5, 5, 9, 3, 3, 1, 8, 7, 6
Offset: 0

Views

Author

Paul D. Hanna, Oct 24 2015

Keywords

Comments

Constant from Narayana's cows sequence: Limit A000930(n)/A000930(n+1) = r.
Reciprocal of constant described by A092526.

Examples

			0.682327803828019327369483739711048256891188581897998577803728606639896...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ ((Sqrt[93] + 9)/18)^(1/3) - ((Sqrt[93] - 9)/18)^(1/3), 10, 100][[1]] (* G. C. Greubel, May 01 2017 *)
  • PARI
    a(n) = my(r = (sqrt(93)/18 + 1/2)^(1/3) - (sqrt(93)/18 - 1/2)^(1/3)); floor(r*10^(n+1))%10
    for(n=0,120,print1(a(n),", "))
    
  • PARI
    solve(r=0, 1,  r^3 + r - 1 ) \\ Michel Marcus, Oct 25 2015

Formula

r = (sqrt(93)/18 + 1/2)^(1/3) - (sqrt(93)/18 - 1/2)^(1/3).
Constant r satisfies:
(1) 1/(1 - r*i) = (r + r^2*i) where i^2 = -1.
(2) r = real( 1/(1 - r*i) ).
(3) r = norm( 1/(1 - r*i) ).
(4) r = r^2 + r^4.
Equals 1/A092526. - Vaclav Kotesovec, Nov 27 2017