cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263720 Palindromic numbers such that the sum of the digits equals the number of divisors.

Original entry on oeis.org

1, 2, 11, 22, 101, 202, 444, 525, 828, 1111, 2222, 4884, 5445, 5775, 12321, 13431, 18081, 21612, 24642, 26862, 31213, 44244, 44844, 51415, 52425, 56265, 62426, 80008, 86868, 89298, 99099, 135531, 162261, 198891, 217712, 237732, 301103, 343343, 480084, 486684, 512215, 521125
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 24 2015

Keywords

Comments

Subsequence of A002113.
A000005(a(n)) = A007953(a(n)).
The only known palindromic primes whose sum of digits equals the numbers of divisors (primes of the form 10^k + 1) are 2,11,101.

Examples

			a(3) = 11, 11 is the palindromic number, digitsum(11) = 1 + 1 = 2, sigma_0(11) = 2.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{d = IntegerDigits@ n}, And[d == Reverse@ d, Total@ d == DivisorSigma[0, n]]]; Select[Range[2^19], fQ] (* Michael De Vlieger, Oct 27 2015 *)
    Select[Range[600000],PalindromeQ[#]&&Total[IntegerDigits[#]] == DivisorSigma[ 0,#]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 28 2019 *)
  • PARI
    lista(nn) = {for(n=1, nn, my(d = digits(n)); if ((Vecrev(d) == d) && (numdiv(n) == sumdigits(n)), print1(n, ", ")););} \\ Michel Marcus, Oct 25 2015