A263720 Palindromic numbers such that the sum of the digits equals the number of divisors.
1, 2, 11, 22, 101, 202, 444, 525, 828, 1111, 2222, 4884, 5445, 5775, 12321, 13431, 18081, 21612, 24642, 26862, 31213, 44244, 44844, 51415, 52425, 56265, 62426, 80008, 86868, 89298, 99099, 135531, 162261, 198891, 217712, 237732, 301103, 343343, 480084, 486684, 512215, 521125
Offset: 1
Examples
a(3) = 11, 11 is the palindromic number, digitsum(11) = 1 + 1 = 2, sigma_0(11) = 2.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Palindromic Number
- Eric Weisstein's World of Mathematics, Divisor Function
- Eric Weisstein's World of Mathematics, Digit Sum
Programs
-
Mathematica
fQ[n_] := Block[{d = IntegerDigits@ n}, And[d == Reverse@ d, Total@ d == DivisorSigma[0, n]]]; Select[Range[2^19], fQ] (* Michael De Vlieger, Oct 27 2015 *) Select[Range[600000],PalindromeQ[#]&&Total[IntegerDigits[#]] == DivisorSigma[ 0,#]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 28 2019 *)
-
PARI
lista(nn) = {for(n=1, nn, my(d = digits(n)); if ((Vecrev(d) == d) && (numdiv(n) == sumdigits(n)), print1(n, ", ")););} \\ Michel Marcus, Oct 25 2015
Comments