cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263837 Non-abundant numbers (or nonabundant numbers): complement of A005101; numbers k for which sigma(k) <= 2*k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 98, 99
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2015

Keywords

Comments

For all n, A003961(a(n)) is in A005100. - Antti Karttunen, Aug 28 2020

Crossrefs

Union of A000396 and A005100.
Cf. A005101 (complement), A023196, A294935 (characteristic function).

Programs

  • Haskell
    a263837 n = a263837_list !! (n-1)
    a263837_list = filter (\x -> a001065 x <= x) [1..]
    -- Reinhard Zumkeller, Oct 31 2015
    
  • Maple
    isA263837 := proc(n)
        if 2*n-numtheory[sigma](n) >=0 then
            true;
        else
            false;
        end if;
    end proc:
    A263837 := proc(n)
        option remember;
        local a;
        if n =1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA263837(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A263837(n),n=1..100) ; # R. J. Mathar, Jun 06 2024
  • Mathematica
    Select[Range[100], DivisorSigma[1, #] <= 2*# &] (* Amiram Eldar, Mar 14 2024 *)
  • PARI
    isok(n) = sigma(n) <= 2*n; \\ Michel Marcus, Dec 27 2015

Formula

A001065(a(n)) <= a(n). - Reinhard Zumkeller, Oct 31 2015

Extensions

Additional description to the definition added by Antti Karttunen, Aug 28 2020