A264526 Smallest number m such that both 2*n-m and 2*n+m are primes.
1, 1, 3, 3, 1, 3, 3, 1, 3, 9, 5, 3, 9, 1, 9, 3, 5, 9, 3, 1, 3, 15, 5, 3, 9, 7, 3, 15, 1, 9, 3, 5, 15, 3, 1, 15, 3, 5, 9, 15, 5, 3, 9, 7, 9, 15, 7, 9, 3, 1, 3, 3, 1, 3, 15, 13, 15, 9, 7, 9, 15, 13, 21, 21, 5, 3, 27, 1, 9, 15, 5, 33, 9, 1, 15, 3, 7, 9, 3, 5
Offset: 2
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 2..10000
Programs
-
Haskell
a264526 = head . a260689_row
-
Mathematica
snm[n_]:=Module[{m=1},While[!PrimeQ[2n-m]||!PrimeQ[2n+m],m=m+2];m]; Array[ snm,90,2] (* Harvey P. Dale, Aug 13 2017, optimized by Ivan N. Ianakiev, Mar 16 2018 *)
-
PARI
a(n) = {my(m=1); while(!(isprime(2*n-m) && isprime(2*n+m)), m+=2); m;} \\ Michel Marcus, Mar 18 2018