cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264853 a(n) = n*(n + 1)*(5*n^2 + 5*n - 4)/12.

Original entry on oeis.org

0, 1, 13, 56, 160, 365, 721, 1288, 2136, 3345, 5005, 7216, 10088, 13741, 18305, 23920, 30736, 38913, 48621, 60040, 73360, 88781, 106513, 126776, 149800, 175825, 205101, 237888, 274456, 315085, 360065, 409696, 464288, 524161, 589645, 661080, 738816, 823213, 914641
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 26 2015

Keywords

Comments

Partial sums of centered 10-gonal (or decagonal) pyramidal numbers.
Subsequence of A204221. In fact, a(n) is of the form (k^2-1)/15 for k = 5*n*(n+1)/2-1. - Bruno Berselli, Nov 27 2015

Crossrefs

Cf. A004466 (first differences), A201106 (partial sums), A204221.
Cf. similar sequences listed in A264854.

Programs

  • Magma
    [n*(n+1)*(5*n^2+5*n-4)/12: n in [0..50]]; // Vincenzo Librandi, Nov 27 2015
    
  • Mathematica
    Table[n (n + 1) (5 n^2 + 5 n - 4)/12, {n, 0, 50}]
    LinearRecurrence[{5,-10,10,-5,1},{0,1,13,56,160},40] (* Harvey P. Dale, Aug 14 2017 *)
  • PARI
    a(n)=n*(n+1)*(5*n^2+5*n-4)/12 \\ Charles R Greathouse IV, Jul 26 2016

Formula

G.f.: x*(1 + 8*x + x^2)/(1 - x)^5.
a(n) = Sum_{k = 0..n} A004466(k).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Vincenzo Librandi, Nov 27 2015