A264853 a(n) = n*(n + 1)*(5*n^2 + 5*n - 4)/12.
0, 1, 13, 56, 160, 365, 721, 1288, 2136, 3345, 5005, 7216, 10088, 13741, 18305, 23920, 30736, 38913, 48621, 60040, 73360, 88781, 106513, 126776, 149800, 175825, 205101, 237888, 274456, 315085, 360065, 409696, 464288, 524161, 589645, 661080, 738816, 823213, 914641
Offset: 0
Links
- OEIS Wiki, Figurate numbers
- Eric Weisstein's World of Mathematics, Pyramidal Number
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Magma
[n*(n+1)*(5*n^2+5*n-4)/12: n in [0..50]]; // Vincenzo Librandi, Nov 27 2015
-
Mathematica
Table[n (n + 1) (5 n^2 + 5 n - 4)/12, {n, 0, 50}] LinearRecurrence[{5,-10,10,-5,1},{0,1,13,56,160},40] (* Harvey P. Dale, Aug 14 2017 *)
-
PARI
a(n)=n*(n+1)*(5*n^2+5*n-4)/12 \\ Charles R Greathouse IV, Jul 26 2016
Formula
G.f.: x*(1 + 8*x + x^2)/(1 - x)^5.
a(n) = Sum_{k = 0..n} A004466(k).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Vincenzo Librandi, Nov 27 2015
Comments