cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265012 a(n) = 10^(prime(n)-1) mod prime(n)^2.

Original entry on oeis.org

2, 1, 0, 8, 12, 53, 137, 286, 185, 378, 466, 1037, 1518, 1033, 2022, 637, 532, 794, 2011, 3551, 1169, 1660, 2574, 3561, 6597, 5152, 7829, 4816, 10356, 9041, 382, 7206, 16578, 17932, 19073, 12383, 20725, 11248, 21377, 16609, 21660, 21178, 20820, 4826, 37234
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 30 2015

Keywords

Examples

			a(2) = a(93) = a(3371851) = 1;
prime(2) = 3; prime(93) = 487; prime(3371851) = 56598313.
		

Crossrefs

Programs

  • Haskell
    import Math.NumberTheory.Moduli (powerMod)
    a265012 n = powerMod 10 (p - 1) (p ^ 2) where p = a000040 n
    
  • Mathematica
    PowerMod[10,#-1 ,#^2]&/@Prime[Range[50]] (* Harvey P. Dale, Feb 10 2016 *)
  • PARI
    a(n) = lift(Mod(10, prime(n)^2)^(prime(n)-1)); \\ Michel Marcus, Jan 22 2022

Formula

a(n) < A001248(n);
a(A049084(A045616(n))) = 1.