cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265024 a(n) = n! * Sum_{d in D(n+1)} (-1)^(d+1)*(n+1)/d, D(n) the divisors of n.

Original entry on oeis.org

1, 1, 8, 6, 144, 480, 5760, 5040, 524160, 2177280, 43545600, 159667200, 6706022400, 49816166400, 2092278988800, 1307674368000, 376610217984000, 4623936565248000, 128047474114560000, 729870602452992000, 77852864261652480000, 613091306060513280000
Offset: 0

Views

Author

Peter Luschny, Jan 26 2016

Keywords

Crossrefs

Cf. A000593, A027750, A038048, A075525 (Bell transform).

Programs

  • Mathematica
    Rest[CoefficientList[Series[Log[QPochhammer[-1, x]/2], {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Oct 15 2017 *)
  • PARI
    a(n) = n!*sumdiv(n+1, d, (-1)^(d+1)*(n+1)/d); \\ Michel Marcus, Jan 26 2016
  • Sage
    A265024 = lambda n: factorial(n)*sum((-1)^(d+1)*(n+1)/d for d in divisors(n+1))
    [A265024(n) for n in (0..21)]
    

Formula

E.g.f.: d/dx log(Product_{k>=1} (1 + x^k)). - Ilya Gutkovskiy, Oct 15 2017
a(n) = n! * A000593(n+1). - Seiichi Manyama, Nov 08 2020.
E.g.f.: d/dx ( Sum_{k>=1} x^k / (k * (1 - x^(2*k))) ). - Seiichi Manyama, Sep 18 2021