A265102 a(n) = binomial(8*n + 6, 4*n + 1)/(8*n + 6).
1, 143, 22610, 3991995, 757398510, 150946230006, 31170212479588, 6611198199648595, 1431806849011462742, 315319074704135127010, 70398290295706497441660, 15897587681946817926283230, 3624898901185998294920196300, 833406923656808938891174678092
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..416
- D. Armstrong, B. Rhoades, and N. Williams, Rational associahedra and noncrossing partitions arxiv:1305.7286v1 [math.CO], 2013.
Crossrefs
Programs
-
Magma
[Binomial(8*n+6, 4*n+1)/(8*n+6): n in [0..20]]; // G. C. Greubel, Feb 16 2019
-
Maple
seq(binomial(8*n + 6, 4*n + 1)/(8*n + 6), n = 0..14);
-
Mathematica
Table[Binomial[8n+6, 4n+1]/(8n+6), {n, 0, 20}] (* Vincenzo Librandi, Dec 09 2015 *)
-
PARI
a(n) = binomial(8*n + 6, 4*n + 1)/(8*n + 6); \\ Altug Alkan, Dec 07 2015
-
Sage
[binomial(8*n+6, 4*n+1)/(8*n+6) for n in (0..20)] # G. C. Greubel, Feb 16 2019
Formula
a(n) = binomial(8*n + 6, 4*n + 1)/(8*n + 6).
(n + 1)*(2*n - 1)*(4*n + 3)*(4*n + 5)*a(n) = 2*(8*n + 1)*(8*n - 1)*(8*n + 3)*(8*n + 5)*a(n-1) with a(0) = 1.
From Ilya Gutkovskiy, Feb 28 2017: (Start)
O.g.f.: (4F3(-1/8,1/8,3/8,5/8; -1/2,3/4,5/4; 256*x) - 1)/(2*x).
E.g.f.: 4F4(7/8,9/8,11/8,13/8; 1/2,7/4,2,9/4; 256*x).
a(n) ~ 4^(4*n+1)/(sqrt(Pi)*n^(3/2)). (End)
Comments