cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265188 Nonnegative m for which 3*floor(m^2/11) = floor(3*m^2/11).

Original entry on oeis.org

0, 1, 5, 6, 10, 11, 12, 16, 17, 21, 22, 23, 27, 28, 32, 33, 34, 38, 39, 43, 44, 45, 49, 50, 54, 55, 56, 60, 61, 65, 66, 67, 71, 72, 76, 77, 78, 82, 83, 87, 88, 89, 93, 94, 98, 99, 100, 104, 105, 109, 110, 111, 115, 116, 120, 121, 122, 126, 127, 131, 132, 133, 137, 138, 142
Offset: 1

Views

Author

Bruno Berselli, Dec 04 2015

Keywords

Comments

See the second comment in A265187.
Also, nonnegative m congruent to 0, 1, 5, 6 or 10 (mod 11).
Primes in sequence: 5, 11, 17, 23, 43, 61, 67, 71, 83, 89, 109, 127, ...

Crossrefs

Cf. A265187.
Cf. similar sequences provided by 3*floor(n^2/h) = floor(3*n^2/h): A005843 (h=2), A008585 (h=3), A001477 (h=4), A008854 (h=5), A047266 (h=6), A047299 (h=7), A042965 (h=8), A265227 (h=9), A054967 (h=10), this sequence (h=11), A047266 (h=12).

Programs

  • Magma
    [n: n in [0..150] | 3*Floor(n^2/11) eq Floor(3*n^2/11)];
    
  • Mathematica
    Select[Range[0, 150], 3 Floor[#^2/11] == Floor[3 #^2/11] &]
    Select[Range[0, 150], MemberQ[{0, 1, 5, 6, 10}, Mod[#, 11]] &]
    LinearRecurrence[{1, 0, 0, 0, 1, -1}, {0, 1, 5, 6, 10, 11}, 70]
  • PARI
    is(n) = 3*(n^2\11) == (3*n^2)\11 \\ Anders Hellström, Dec 05 2015
    
  • PARI
    concat(0, Vec(x^2*(1 + 4*x + x^2 + 4*x^3 + x^4)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)) + O(x^100))) \\ Michel Marcus, Dec 05 2015
  • Sage
    [n for n in (0..150) if 3*floor(n^2/11) == floor(3*n^2/11)]
    

Formula

G.f.: x^2*(1 + 4*x + x^2 + 4*x^3 + x^4)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-5) - a(n-6), n>6.