A265885 a(n) = n IMPL prime(n), where IMPL is the bitwise logical implication.
2, 3, 5, 7, 11, 13, 25, 23, 23, 29, 31, 55, 59, 59, 63, 63, 63, 61, 111, 111, 107, 111, 123, 127, 103, 101, 103, 107, 111, 113, 127, 223, 223, 223, 221, 223, 223, 251, 255, 255, 247, 245, 255, 211, 215, 215, 211, 223, 239, 237, 237, 239, 251, 251, 457, 455
Offset: 1
Keywords
Examples
. prime(25)=97 | 1100001 . 25 | 11001 . -------------+-------- . 25 IMPL 97 | 1100111 -> a(25) = 103 .
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Implies
Programs
-
Haskell
a265885 n = n `bimpl` a000040 n where bimpl 0 0 = 0 bimpl p q = 2 * bimpl p' q' + if u <= v then 1 else 0 where (p', u) = divMod p 2; (q', v) = divMod q 2
-
Julia
using IntegerSequences [Bits("IMP", n, p) for (n, p) in enumerate(Primes(1, 263))] |> println # Peter Luschny, Sep 25 2021
-
Maple
a:= n-> Bits[Implies](n, ithprime(n)): seq(a(n), n=1..56); # Alois P. Heinz, Sep 24 2021
-
Mathematica
IMPL[n_, k_] := If[n == 0, 0, BitOr[2^Length[IntegerDigits[k, 2]]-1-n, k]]; a[n_] := n ~IMPL~ Prime[n]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Sep 25 2021, after David A. Corneth's code in A265705 *)
-
PARI
a(n) = bitor((2<
Michel Marcus, Jan 22 2022