A068393
Number of partitions of n X n checkerboard by two edgewise-connected sets which produce the maximum n^2-2n+2 frontier edges between the two sets. Partitions equal under rotation or reflection are counted only once.
Original entry on oeis.org
2, 3, 7, 44, 494, 748827, 99987552, 23904291912, 23904291912, 14647978829979, 16186345621426754, 45843626565163628751, 235646717730827228414584, 3099290829556018890177304005
Offset: 2
From _Andrew Howroyd_, Apr 15 2016: (Start)
Case n=4: There are 2 nonisomorphic symmetrical solutions (see illustration below). a(4)=(A068381(4)/8 + 2)/2 = 7.
__.__.__.__. __.__.__.__.
| __ __| | __ | |
| | | | | | | | | |
|__| |__| | | | |__| |
|__.__.__.__| |__|__.__.__|
Case n=5: There are 7 nonisomorphic symmetrical solutions (see illustration below). a(5)=(A068381(5)/8 + 7)/2 = 44.
__.__.__.__.__. __.__.__.__.__. __.__.__.__.__. __.__.__.__.__.
| __| |__ | | __| |__ | | |__ __| | | | __ | |
| |__ __| | | | __ | | | __| |__ | | | | | | |
| __| |__ | | | | | | | | | __ | | | | | | | |
| |__.__.__| | | |__| |__| | | |__| |__| | | |__| |__| |
|__.__.__.__.__| |__.__.__.__.__| |__.__.__.__.__| |__.__.__.__.__|
__.__.__.__.__. __.__.__.__.__. __.__.__.__.__.
|__.__ __.__| |__ __ __| | __ __ |
| __| |__ | | | | | | | |__| | | |__|
| | __ | | | | | | | | | __| |__ |
| |__| |__| | | |__| |__| | | |__.__.__| |
|__.__.__.__.__| |__.__.__.__.__| |__.__.__.__.__|
(End)
A331001
Number of symmetrical self-avoiding walks with maximum length on an n X n board which start in the upper left corner and go right on the first step.
Original entry on oeis.org
1, 1, 1, 2, 8, 24, 282, 888, 46933, 238119, 36027060, 187011538, 130162111969, 1084873972934, 2200211600730504, 18559765767843341, 174907641314142138422, 2355130982684196593401, 65250573687646264926302133, 884112393542714503429381555, 114482128183138374886637093070429, 2465467527044697154210112460659081
Offset: 1
The solutions for n=3 and n=4:
n=3: | n=4:
1 | 1 2
>>v | >>>v | >v>
v<< | v<<< | v<^<
>> | >>>v | v>v^
| <<< | >^>^
A328931
Number of Hamiltonian paths in an n X n square, starting from an edge, finishing anywhere, all symmetries excluded.
Original entry on oeis.org
1, 1, 4, 51, 660, 30745, 1621471, 312637285, 72599875346, 60968508324409, 64128000370443037, 240651566540823214362, 1162174738476331286327484, 19776621796151182708398884540, 441809773825445785471324877668710
Offset: 1
All distinct paths through a 1 X 1 labyrinth visiting all cells.
+ +
|**|
+--+
.
All distinct paths through a 2 X 2 labyrinth visiting all cells.
+ +--+
| |**|
+ + +
| |
+--+--+
.
All distinct paths through a 3 X 3 labyrinth visiting all cells.
+ +--+--+
| | |
+ + + +
| | |
+--+--+ +
|** |
+--+--+--+
.
+ +--+--+
| | **|
+ + +--+
| | |
+ +--+ +
| |
+--+--+--+
.
+ +--+--+
| | |
+ + + +
| |**| |
+ +--+ +
| |
+--+--+--+
.
+ +--+--+
| | |
+ + + +
| | | |
+ + + +
| |**|
+--+--+--+
A384173
Number of Hamiltonian paths from NW to SW corners in an n X n grid reduced for symmetry, i.e., where reflection about the x-axis is not counted as distinct.
Original entry on oeis.org
1, 1, 1, 5, 43, 897, 44209, 4467927, 1043906917, 506673590576, 555799435739334, 1284472450789974196, 6625529679919810063544, 72597408139909172033687226, 1762085630816152820582838187465, 91326629994353561722347679614188407
Offset: 1
The two paths of A000532(3) = 2 are equivalent under reflection about the x-axis:
+ - + - +
|
+ - + +
| | |
+ + - +
+ + - +
| | |
+ - + +
|
+ - + - +
- J. L. Jacobsen, Exact enumeration of Hamiltonian circuits, walks and chains in two and three dimensions, J. Phys. A: Math. Theor. 40 (2007) 14667-14678.
- J.-M. Mayer, C. Guez and J. Dayantis, Exact computer enumeration of the number of Hamiltonian paths in small square plane lattices, Physical Review B, Vol. 42 Number 1, 1990.
Showing 1-4 of 4 results.
Comments